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Instruments

Heteroskedasticity

Ordinary least squares

Yi=a+ bX; +¢;

Under the following hypothesis

H
Hy
Hs
Hy

: €; errors are uncorrelated with common variance o2

: explanatory variables (X’s) are linearly independent.
: g; errors have 0 expectation.

: g; errors are uncorrelated with Xj.

The OLS estimator is unbiased and as minimum variance
among linear estimators.
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dasticity

not H; : explanatory variables are multicollinear
= remove a variable (set a ref if you have dummies)
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dasticity

not H; : explanatory variables are multicollinear
= remove a variable (set a ref if you have dummies)

not Hs : g; errors have non 0 expectation
= add an intercept

not Hs : g; errors are correlated with X;
= use instrumental variables

H, : ¢g; errors are correlated and present heteroskedasticity
= 2 steps estimation (2SLS).
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OLS : opening the black box

Let’s center Y and X : Y; — Y and X; — X to get rid of the
intercept. The OLS estimator b minimizes :
S =miny >, (Y; — bX;)? = min, Y, (g)%
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OLS : opening the black box

Let’s center Y and X : Y; — Y and X; — X to get rid of the
intercept. The OLS estimator b minimizes :

S =miny >, (Y; — bX;)? = min, Y ;(g;)%. Let’s derive S with
respect to b :

- = —QbZX —bX;) = —2bZXa,

Here is where we use that X; L ¢;.

a8
%:OH;XiYi:bZXiXi: b=

> XY
> XiXi

The actual OLS estimator for b is the correlation :
Cov(X,Y) _ Yo (X — X)(Y;—7Y)
Var(X) > (X — X)?
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Panel data

Y; is very dependent of Y; ;1. We should not use a standard
linear model.

Yit=a+bX;1+eir < Yig—a—0X;y=¢€iy

o What if the residuals are positives for some compagnies ?
Correlation with X;; = Hs3 fails : instruments are needed.

o What if the residuals are larger for some compagnies? Hy
fails : heteroskedasticity.

o What if the residuals correlated across time? Hj fails :
they have memory, include lags.
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The OLS estimator b minimizes : S = min, > (Y — bX;)? Let’s
derive § with respect to b :

08
% = —2[); Xzé‘l

If X; [ e;, then the estimator will be biased. The technical
solution is to replace X; (here only, not in the model) by a
variable linked with X; but not with &;.

For example, the age of a compagny is correlated to its size, but
not perfectly.

The main limitation are weak instruments : the link is to weak
to estimate well the effect of Xj.
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You can give instruments to the plm function :

plm(Y~X, data = db, instruments = ~Z)

H’K 9/16



Instruments Linear model
Instruments
Heteroskedasticity

Heteroskedasticity
o Coo(XY) YL (i-T)(Yi-T)
- Var(X) S (X — X)?

The denominator is the estimator of var(¢) under the
assumption of homoskedasticity (and independence).

The 2SLS estimates first this denominator, and then plug it in
the definition of b.
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Heteroskedasticity
o Coo(XY) YL (i-T)(Yi-T)
- Var(X) S (X — X)?

The denominator is the estimator of var(¢) under the
assumption of homoskedasticity (and independence).

The 2SLS estimates first this denominator, and then plug it in
the definition of b.

Lags

Include lags in the model and/or estimate a second model for e

Yie=rYii1+a+bXis+eis
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AutoRegressive model PACF

AutoRegressive model : AR(p)

In AutoRegressive models, ¢; depends directly on its past.

AR model

€t =0a1 E—1 + A2 €2+ -+ ap E4—p + €

s(l-al-alP+ - —alP)e=AL) e =¢

@ ag = 1 by definition and e; is iid.

@ p is the order of the AR : how long the past affects the
present.

@ the polynomial A(z) has no unit root.

Theorem

Ifey is a AR(p), then A(zx) has no unit root and €, is stationary.
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AutoRegressive model PACF

Partial autocorrelation function
Suppose we don’t know the order p of the model :
Er = a1 €t_1+a25t_2+---+ap5t_p+et

How to find p? We consider all the nested models of order
k € Nx. PACF (k) is the coefficient of the last variable of the
linear model explaining ¢; by its k past values.

g = &1 Et_1+&2 Et_2+"'+PACF(k) E+—k T+ €

Theorem

If et is a AR(p) then PACF(p) # 0 and for any k > p,
PACF(k) = 0.
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Theorem

If et is a AR(p) then PACF(p) # 0 and for any k > p,
PACF(k) = 0.

Er =01 -1+ a2+ -+ aper—p+ €

Et—&1Et—1—d2€t—2—"'—&p€t—p=€t
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Orthogonality

Theorem

If et is a AR(p) then PACF(p) # 0 and for any k > p,
PACF(k) = 0.

Er =01 -1+ a2+ -+ aper—p+ €
Et—&1Et—1—d2€t—2—"'—&p€t—p=€t

then any further lag is orthogonal to e;

Further lags are instruments

et Le—pr VE>0
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Generalized method of moments

Generalized method of moments

GMM are designed to estimate any model where the parameters
6 can be defined as solutions of an equation E[m(6, X;)] =0
with dim(m) > dim(6).

The simple linear model writes :

Yi=a+ bX; +¢; with E[g;] =0
that is
E[1(Y; —a+ bX;)] =0 and E[X/(Y; — a+ bX;)] =0
and with instruments :
E[1(Y; —a+bX;)]=0and E[Z/(Y; — a+ bX;)] =0

You can also add more instruments than X'’s.

H2K 15/16



Generalized method of moments

PGMM function

not the package PGMM !
suppose you want to estimate the model

Yie=a+bY 1+ cXip+dX; 1 +¢€iy

using the lags of Y and X further than 1 (for example from 2 to
10) as GMM instruments and some classical instrument Z.
The pgmm function has 3 parts for the model, separated by |

© the model itself Y lag(Y)+X+lag(X)
© the gmm instruments lag(Y+X,2:10)
@ the classical instruments Z

output <- pgmm(Y ~lag(Y)+X+lag(X)|lag(¥Y+X,2:10)1Z,
data=db, index=c("Company_Name","year"),

effect = "twoways", model = "twosteps")

summary (output)
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