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Ordinary least squares

Yi = a + bXi + εi

Under the following hypothesis
H1 : explanatory variables (X ’s) are linearly independent.
H2 : εi errors have 0 expectation.
H3 : εi errors are uncorrelated with Xi .
H4 : εi errors are uncorrelated with common variance σ2.

The OLS estimator is unbiased and as minimum variance
among linear estimators.
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not H1 : explanatory variables are multicollinear
⇒ remove a variable (set a ref if you have dummies)

not H2 : εi errors have non 0 expectation
⇒ add an intercept

not H3 : εi errors are correlated with Xi
⇒ use instrumental variables

H4 : εi errors are correlated and present heteroskedasticity
⇒ 2 steps estimation (2SLS).
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OLS : opening the black box

Let’s center Y and X : Yi − Y and Xi − X to get rid of the
intercept. The OLS estimator b̂ minimizes :
S = minb

∑
i(Yi − bXi)

2 = minb
∑

i(εi)
2.

Let’s derive S with
respect to b :

∂S
∂b

= −2b
∑

i
Xi(Yi − bXi) = −2b

∑
i

Xiεi .

Here is where we use that Xi ⊥ εi .
∂S
∂b

= 0 ↔
∑

i
XiYi = b

∑
i

XiXi ⇒ b =

∑
i XiYi∑
i XiXi

The actual OLS estimator for b is the correlation :

b̂ =
Cov(X ,Y )

Var(X)
=

∑n
i=1(Xi − X)(Yi − Y )∑n

i=1(Xi − X)2
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Panel data
Yi,t is very dependent of Yi,t+1. We should not use a standard
linear model.

Yi,t = a + bXi,t + εi,t ↔ Yi,t − a − bXi,t = εi,t

What if the residuals are positives for some compagnies ?
Correlation with Xi,t ⇒ H3 fails : instruments are needed.
What if the residuals are larger for some compagnies ? H4

fails : heteroskedasticity.
What if the residuals correlated across time ? H4 fails :
they have memory, include lags.
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The OLS estimator b̂ minimizes : S = minb
∑

i(Yi − bXi)
2 Let’s

derive S with respect to b :

∂S
∂b

= −2b
∑

i
Xiεi .

If Xi 6⊥ εi , then the estimator will be biased. The technical
solution is to replace Xi (here only, not in the model) by a
variable linked with Xi but not with εi .
For example, the age of a compagny is correlated to its size, but
not perfectly.
The main limitation are weak instruments : the link is to weak
to estimate well the effect of Xi .
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You can give instruments to the plm function :

plm(Y~X, data = db, instruments = ~Z)
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Heteroskedasticity

b̂ =
Cov(X ,Y )

Var(X)
=

∑n
i=1(Xi − X)(Yi − Y )∑n

i=1(Xi − X)2

The denominator is the estimator of var(ε) under the
assumption of homoskedasticity (and independence).
The 2SLS estimates first this denominator, and then plug it in
the definition of b̂.

Lags
Include lags in the model and/or estimate a second model for ε

Yi,t = rYi,t−1 + a + bXi,t + εi,t
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AutoRegressive model : AR(p)
In AutoRegressive models, εt depends directly on its past.

AR model

εt = a1 εt−1 + a2 εt−2 + · · ·+ ap εt−p + et

⇔ (1− a1 L − a2 L2 + · · · − ap Lp)εt = A(L) εt = et

a0 = 1 by definition and et is iid.
p is the order of the AR : how long the past affects the
present.
the polynomial A(x) has no unit root.

Theorem
If εt is a AR(p), then A(x) has no unit root and εt is stationary.
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Partial autocorrelation function
Suppose we don’t know the order p of the model :

εt = a1 εt−1 + a2 εt−2 + · · ·+ ap εt−p + et

How to find p ? We consider all the nested models of order
k ∈ N∗. PACF(k) is the coefficient of the last variable of the
linear model explaining εt by its k past values.

εt = â1 εt−1 + â2 εt−2 + · · ·+ PACF(k) εt−k + et

Theorem
If εt is a AR(p) then PACF(p) 6= 0 and for any k > p,
PACF(k) = 0.
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Orthogonality

Theorem
If εt is a AR(p) then PACF(p) 6= 0 and for any k > p,
PACF(k) = 0.

εt = â1 εt−1 + â2 εt−2 + · · ·+ âp εt−p + et

εt − â1 εt−1 − â2 εt−2 − · · · − âp εt−p = et

then any further lag is orthogonal to et

Further lags are instruments

et ⊥ εt−p−k ∀k > 0
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Generalized method of moments
GMM are designed to estimate any model where the parameters
θ can be defined as solutions of an equation E[m(θ,Xi)] = 0
with dim(m) ≥ dim(θ).
The simple linear model writes :

Yi = a + bXi + εi with E[εi ] = 0

that is

E[1(Yi − a + bXi)] = 0 and E[X ′
i (Yi − a + bXi)] = 0

and with instruments :

E[1(Yi − a + bXi)] = 0 and E[Z ′
i (Yi − a + bXi)] = 0

You can also add more instruments than X ’s.
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PGMM function

not the package PGMM !
suppose you want to estimate the model

Yi,t = a + bYi,t−1 + cXi,t + dXi,t−1 + εi,t

using the lags of Y and X further than 1 (for example from 2 to
10) as GMM instruments and some classical instrument Z .
The pgmm function has 3 parts for the model, separated by |

1 the model itself Y lag(Y)+X+lag(X)
2 the gmm instruments lag(Y+X,2:10)
3 the classical instruments Z

output <- pgmm(Y ~lag(Y)+X+lag(X)|lag(Y+X,2:10)|Z,
data=db,index=c("Company_Name","year"),
effect = "twoways", model = "twosteps")
summary(output)
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