General method of moments

Hugo Harari-Kermadec

EPOG
Econometrics

Nov. 21, 2019
(1) Instruments
(2) AutoRegressive model
(3) Generalized method of moments
(1) Instruments

- Linear model
- Instruments
- Heteroskedasticity
(2) AutoRegressive model
(3) Generalized method of moments

Ordinary least squares

$$
Y_{i}=a+b X_{i}+\varepsilon_{i}
$$

Under the following hypothesis
H_{1} : explanatory variables (X 's) are linearly independent.
$H_{2}: \varepsilon_{i}$ errors have 0 expectation.
$H_{3}: \varepsilon_{i}$ errors are uncorrelated with X_{i}.
$H_{4}: \varepsilon_{i}$ errors are uncorrelated with common variance σ^{2}.
The OLS estimator is unbiased and as minimum variance among linear estimators.
not H_{1} : explanatory variables are multicollinear \Rightarrow remove a variable (set a ref if you have dummies)
not H_{1} : explanatory variables are multicollinear \Rightarrow remove a variable (set a ref if you have dummies)
not $H_{2}: \varepsilon_{i}$ errors have non 0 expectation
\Rightarrow add an intercept
not H_{1} : explanatory variables are multicollinear
\Rightarrow remove a variable (set a ref if you have dummies)
not $H_{2}: \varepsilon_{i}$ errors have non 0 expectation
\Rightarrow add an intercept
not $H_{3}: \varepsilon_{i}$ errors are correlated with X_{i}
\Rightarrow use instrumental variables
not H_{1} : explanatory variables are multicollinear
\Rightarrow remove a variable (set a ref if you have dummies)
not $H_{2}: \varepsilon_{i}$ errors have non 0 expectation
\Rightarrow add an intercept
not $H_{3}: \varepsilon_{i}$ errors are correlated with X_{i}
\Rightarrow use instrumental variables
$H_{4}: \varepsilon_{i}$ errors are correlated and present heteroskedasticity $\Rightarrow 2$ steps estimation (2SLS).

OLS : opening the black box

Let's center Y and $X: Y_{i}-\bar{Y}$ and $X_{i}-\bar{X}$ to get rid of the intercept. The OLS estimator \hat{b} minimizes :
$S=\min _{b} \sum_{i}\left(Y_{i}-b X_{i}\right)^{2}=\min _{b} \sum_{i}\left(\varepsilon_{i}\right)^{2}$.

OLS : opening the black box

Let's center Y and $X: Y_{i}-\bar{Y}$ and $X_{i}-\bar{X}$ to get rid of the intercept. The OLS estimator \hat{b} minimizes :
$S=\min _{b} \sum_{i}\left(Y_{i}-b X_{i}\right)^{2}=\min _{b} \sum_{i}\left(\varepsilon_{i}\right)^{2}$. Let's derive S with respect to b :

$$
\frac{\partial S}{\partial b}=-2 b \sum_{i} X_{i}\left(Y_{i}-b X_{i}\right)=-2 b \sum_{i} X_{i} \varepsilon_{i}
$$

OLS : opening the black box

Let's center Y and $X: Y_{i}-\bar{Y}$ and $X_{i}-\bar{X}$ to get rid of the intercept. The OLS estimator \hat{b} minimizes :
$S=\min _{b} \sum_{i}\left(Y_{i}-b X_{i}\right)^{2}=\min _{b} \sum_{i}\left(\varepsilon_{i}\right)^{2}$. Let's derive S with respect to b :

$$
\frac{\partial S}{\partial b}=-2 b \sum_{i} X_{i}\left(Y_{i}-b X_{i}\right)=-2 b \sum_{i} X_{i} \varepsilon_{i}
$$

Here is where we use that $X_{i} \perp \varepsilon_{i}$.

$$
\frac{\partial S}{\partial b}=0 \leftrightarrow \sum_{i} X_{i} Y_{i}=b \sum_{i} X_{i} X_{i} \Rightarrow b=\frac{\sum_{i} X_{i} Y_{i}}{\sum_{i} X_{i} X_{i}}
$$

OLS : opening the black box

Let's center Y and $X: Y_{i}-\bar{Y}$ and $X_{i}-\bar{X}$ to get rid of the intercept. The OLS estimator \hat{b} minimizes :
$S=\min _{b} \sum_{i}\left(Y_{i}-b X_{i}\right)^{2}=\min _{b} \sum_{i}\left(\varepsilon_{i}\right)^{2}$. Let's derive S with respect to b :

$$
\frac{\partial S}{\partial b}=-2 b \sum_{i} X_{i}\left(Y_{i}-b X_{i}\right)=-2 b \sum_{i} X_{i} \varepsilon_{i}
$$

Here is where we use that $X_{i} \perp \varepsilon_{i}$.

$$
\frac{\partial S}{\partial b}=0 \leftrightarrow \sum_{i} X_{i} Y_{i}=b \sum_{i} X_{i} X_{i} \Rightarrow b=\frac{\sum_{i} X_{i} Y_{i}}{\sum_{i} X_{i} X_{i}}
$$

The actual OLS estimator for b is the correlation :

$$
\hat{b}=\frac{\operatorname{Cov}(X, Y)}{\operatorname{Var}(X)}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}
$$

Panel data

$Y_{i, t}$ is very dependent of $Y_{i, t+1}$. We should not use a standard linear model.

$$
Y_{i, t}=a+b X_{i, t}+\varepsilon_{i, t} \leftrightarrow \quad Y_{i, t}-a-b X_{i, t}=\varepsilon_{i, t}
$$

- What if the residuals are positives for some compagnies? Correlation with $X_{i, t} \Rightarrow H_{3}$ fails : instruments are needed.
- What if the residuals are larger for some compagnies? H_{4} fails : heteroskedasticity.
- What if the residuals correlated across time? H_{4} fails : they have memory, include lags.

The OLS estimator \hat{b} minimizes : $S=\min _{b} \sum_{i}\left(Y_{i}-b X_{i}\right)^{2}$ Let's derive S with respect to b :

$$
\frac{\partial S}{\partial b}=-2 b \sum_{i} X_{i} \varepsilon_{i}
$$

If $X_{i} \not \perp \varepsilon_{i}$, then the estimator will be biased. The technical solution is to replace X_{i} (here only, not in the model) by a variable linked with X_{i} but not with ε_{i}.
For example, the age of a compagny is correlated to its size, but not perfectly.
The main limitation are weak instruments : the link is to weak to estimate well the effect of X_{i}.

You can give instruments to the plm function : $\mathrm{plm}(\mathrm{Y} \sim \mathrm{X}$, data $=\mathrm{db}$, instruments $=\sim \mathrm{Z})$

Heteroskedasticity

$$
\hat{b}=\frac{\operatorname{Cov}(X, Y)}{\operatorname{Var}(X)}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}
$$

The denominator is the estimator of $\operatorname{var}(\varepsilon)$ under the assumption of homoskedasticity (and independence). The 2SLS estimates first this denominator, and then plug it in the definition of \hat{b}.

Heteroskedasticity

$$
\hat{b}=\frac{\operatorname{Cov}(X, Y)}{\operatorname{Var}(X)}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}
$$

The denominator is the estimator of $\operatorname{var}(\varepsilon)$ under the assumption of homoskedasticity (and independence). The 2SLS estimates first this denominator, and then plug it in the definition of \hat{b}.

Lags

Include lags in the model and/or estimate a second model for ε

$$
Y_{i, t}=r Y_{i, t-1}+a+b X_{i, t}+\varepsilon_{i, t}
$$

AutoRegressive model : AR(p)

In AutoRegressive models, ε_{t} depends directly on its past.

AR model

$$
\begin{gathered}
\varepsilon_{t}=a_{1} \varepsilon_{t-1}+a_{2} \varepsilon_{t-2}+\cdots+a_{p} \varepsilon_{t-p}+e_{t} \\
\Leftrightarrow\left(1-a_{1} L-a_{2} L^{2}+\cdots-a_{p} L^{p}\right) \varepsilon_{t}=A(L) \varepsilon_{t}=e_{t}
\end{gathered}
$$

- $a_{0}=1$ by definition and e_{t} is iid.
- p is the order of the AR : how long the past affects the present.
- the polynomial $A(x)$ has no unit root.

Theorem

If ε_{t} is a $A R(p)$, then $A(x)$ has no unit root and ε_{t} is stationary.

Partial autocorrelation function

Suppose we don't know the order p of the model :

$$
\varepsilon_{t}=a_{1} \varepsilon_{t-1}+a_{2} \varepsilon_{t-2}+\cdots+a_{p} \varepsilon_{t-p}+e_{t}
$$

How to find p ? We consider all the nested models of order $k \in \mathbb{N} *$. $\operatorname{PACF}(\mathrm{k})$ is the coefficient of the last variable of the linear model explaining ε_{t} by its k past values.

$$
\varepsilon_{t}=\hat{a}_{1} \varepsilon_{t-1}+\hat{a}_{2} \varepsilon_{t-2}+\cdots+P A C F(k) \varepsilon_{t-k}+e_{t}
$$

Theorem

If ε_{t} is a $A R(p)$ then $P A C F(p) \neq 0$ and for any $k>p$, $P A C F(k)=0$.

Orthogonality

Theorem

If ε_{t} is a $A R(p)$ then $P A C F(p) \neq 0$ and for any $k>p$, $P A C F(k)=0$.

$$
\begin{aligned}
& \varepsilon_{t}=\hat{a}_{1} \varepsilon_{t-1}+\hat{a}_{2} \varepsilon_{t-2}+\cdots+\hat{a}_{p} \varepsilon_{t-p}+e_{t} \\
& \varepsilon_{t}-\hat{a}_{1} \varepsilon_{t-1}-\hat{a}_{2} \varepsilon_{t-2}-\cdots-\hat{a}_{p} \varepsilon_{t-p}=e_{t}
\end{aligned}
$$

Orthogonality

Theorem

If ε_{t} is a $A R(p)$ then $\operatorname{PACF}(p) \neq 0$ and for any $k>p$, $P A C F(k)=0$.

$$
\begin{aligned}
& \varepsilon_{t}=\hat{a}_{1} \varepsilon_{t-1}+\hat{a}_{2} \varepsilon_{t-2}+\cdots+\hat{a}_{p} \varepsilon_{t-p}+e_{t} \\
& \varepsilon_{t}-\hat{a}_{1} \varepsilon_{t-1}-\hat{a}_{2} \varepsilon_{t-2}-\cdots-\hat{a}_{p} \varepsilon_{t-p}=e_{t}
\end{aligned}
$$

then any further lag is orthogonal to e_{t}

Further lags are instruments

$$
e_{t} \perp \varepsilon_{t-p-k} \quad \forall k>0
$$

(1) Instruments
(2) AutoRegressive model
(3) Generalized method of moments

Generalized method of moments

GMM are designed to estimate any model where the parameters θ can be defined as solutions of an equation $\mathbb{E}\left[m\left(\theta, X_{i}\right)\right]=0$ with $\operatorname{dim}(m) \geq \operatorname{dim}(\theta)$.
The simple linear model writes :

$$
Y_{i}=a+b X_{i}+\varepsilon_{i} \text { with } \mathbb{E}\left[\varepsilon_{i}\right]=0
$$

that is

$$
\mathbb{E}\left[1\left(Y_{i}-a+b X_{i}\right)\right]=0 \text { and } \mathbb{E}\left[X_{i}^{\prime}\left(Y_{i}-a+b X_{i}\right)\right]=0
$$

and with instruments :

$$
\mathbb{E}\left[1\left(Y_{i}-a+b X_{i}\right)\right]=0 \text { and } \mathbb{E}\left[Z_{i}^{\prime}\left(Y_{i}-a+b X_{i}\right)\right]=0
$$

You can also add more instruments than X 's.

$$
\mathbf{H}^{2} \mathbf{K}
$$

PGMM function

not the package PGMM!
suppose you want to estimate the model

$$
Y_{i, t}=a+b Y_{i, t-1}+c X_{i, t}+d X_{i, t-1}+\varepsilon_{i, t}
$$

using the lags of Y and X further than 1 (for example from 2 to 10) as GMM instruments and some classical instrument Z. The pgmm function has 3 parts for the model, separated by |
(1) the model itself $\mathrm{Y} \operatorname{lag}(\mathrm{Y})+\mathrm{X}+\operatorname{lag}(\mathrm{X})$
(2) the gmm instruments $\operatorname{lag}(\mathrm{Y}+\mathrm{X}, 2: 10)$
(3) the classical instruments Z
output <- pgmm(Y ~lag(Y)+X+lag(X)|lag(Y+X,2:10)|Z, data=db,index=c("Company_Name", "year"), effect = "twoways", model = "twosteps") summary (output)

