General method of moments

Hugo Harari-Kermadec

EPOG Econometrics

Nov. 21, 2019

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Instruments AutoRegressive model Generalized method of moments

- 2 AutoRegressive model
- **3** Generalized method of moments

ъ

э

< 17 ▶

Instruments	Linear model
AutoRegressive model	
Generalized method of moments	Heteroskedasticity

1 Instruments

- Linear model
- Instruments
- \bullet Heteroske
dasticity
- 2 AutoRegressive model
- **3** Generalized method of moments

Ordinary least squares

$$Y_i = a + bX_i + \varepsilon_i$$

Under the following hypothesis

- H_1 : explanatory variables (X's) are linearly independent.
- H_2 : ε_i errors have 0 expectation.
- H_3 : ε_i errors are uncorrelated with X_i .

 H_4 : ε_i errors are uncorrelated with common variance σ^2 . The OLS estimator is unbiased and as minimum variance among linear estimators. InstrumentsLinear modelAutoRegressive modelInstrumentsGeneralized method of momentsHeteroskedasticity

not H_1 : explanatory variables are multicollinear \Rightarrow remove a variable (set a ref if you have dummies)

・ 同 ト ・ ヨ ト ・ ヨ ト

5/16

э

not H_1 : explanatory variables are multicollinear \Rightarrow remove a variable (set a ref if you have dummies) not H_2 : ε_i errors have non 0 expectation \Rightarrow add an intercept

- ₹ 🖬 🕨

э

- not H_1 : explanatory variables are multicollinear \Rightarrow remove a variable (set a ref if you have dummies) not H_2 : ε_i errors have non 0 expectation \Rightarrow add an intercept not H_3 : ε_i errors are correlated with X_i
 - \Rightarrow use instrumental variables

- not H_1 : explanatory variables are multicollinear \Rightarrow remove a variable (set a ref if you have dummies) not H_2 : ε_i errors have non 0 expectation \Rightarrow add an intercept
- not H_3 : ε_i errors are correlated with X_i \Rightarrow use instrumental variables
 - H_4 : ε_i errors are correlated and present heteroskedasticity $\Rightarrow 2$ steps estimation (2SLS).

 Instruments
 Linear model

 AutoRegressive model
 Instruments

 Generalized method of moments
 Heteroskedasticity

OLS : opening the black box

Let's center Y and X : $Y_i - \overline{Y}$ and $X_i - \overline{X}$ to get rid of the intercept. The OLS estimator \hat{b} minimizes : $S = \min_b \sum_i (Y_i - bX_i)^2 = \min_b \sum_i (\varepsilon_i)^2.$

 Instruments
 Linear model

 AutoRegressive model
 Instruments

 Generalized method of moments
 Heteroskedasticity

OLS : opening the black box

Let's center Y and $X : Y_i - \overline{Y}$ and $X_i - \overline{X}$ to get rid of the intercept. The OLS estimator \hat{b} minimizes : $S = \min_b \sum_i (Y_i - bX_i)^2 = \min_b \sum_i (\varepsilon_i)^2$. Let's derive S with respect to b:

$$\frac{\partial S}{\partial b} = -2b\sum_{i} X_i(Y_i - bX_i) = -2b\sum_{i} X_i\varepsilon_i.$$

InstrumentsLinear modelAutoRegressive modelInstrumentsGeneralized method of momentsHeteroskedasticity

OLS : opening the black box

Let's center Y and $X : Y_i - \overline{Y}$ and $X_i - \overline{X}$ to get rid of the intercept. The OLS estimator \hat{b} minimizes : $S = \min_b \sum_i (Y_i - bX_i)^2 = \min_b \sum_i (\varepsilon_i)^2$. Let's derive S with respect to b:

$$\frac{\partial S}{\partial b} = -2b \sum_{i} X_i (Y_i - bX_i) = -2b \sum_{i} X_i \varepsilon_i.$$

Here is where we use that $X_i \perp \varepsilon_i$.

$$\frac{\partial S}{\partial b} = 0 \leftrightarrow \sum_{i} X_i Y_i = b \sum_{i} X_i X_i \Rightarrow b = \frac{\sum_{i} X_i Y_i}{\sum_{i} X_i X_i}$$

 Instruments
 Linear model

 AutoRegressive model
 Instruments

 Generalized method of moments
 Heteroskedasticity

OLS : opening the black box

Let's center Y and $X : Y_i - \overline{Y}$ and $X_i - \overline{X}$ to get rid of the intercept. The OLS estimator \hat{b} minimizes : $S = \min_b \sum_i (Y_i - bX_i)^2 = \min_b \sum_i (\varepsilon_i)^2$. Let's derive S with respect to b:

$$\frac{\partial S}{\partial b} = -2b\sum_{i} X_i(Y_i - bX_i) = -2b\sum_{i} X_i\varepsilon_i.$$

Here is where we use that $X_i \perp \varepsilon_i$.

$$\frac{\partial S}{\partial b} = 0 \leftrightarrow \sum_{i} X_i Y_i = b \sum_{i} X_i X_i \Rightarrow b = \frac{\sum_{i} X_i Y_i}{\sum_{i} X_i X_i}$$

The actual OLS estimator for b is the correlation :

$$\hat{b} = \frac{Cov(X, Y)}{Var(X)} = \frac{\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})}{\sum_{i=1}^{n} (X_i - \overline{X})^2}$$

Panel data

 $Y_{i,t}$ is very dependent of $Y_{i,t+1}$. We should not use a standard linear model.

$$Y_{i,t} = a + bX_{i,t} + \varepsilon_{i,t} \iff Y_{i,t} - a - bX_{i,t} = \varepsilon_{i,t}$$

- What if the residuals are positives for some compagnies? Correlation with $X_{i,t} \Rightarrow H_3$ fails : instruments are needed.
- What if the residuals are larger for some compagnies ? H_4 fails : heteroskedasticity.
- What if the residuals correlated **across time**? H_4 fails : they have memory, include lags.

InstrumentsLinear modelAutoRegressive modelInstrumentsGeneralized method of momentsHeteroskedasticity

The OLS estimator \hat{b} minimizes : $S = \min_b \sum_i (Y_i - bX_i)^2$ Let's derive S with respect to b :

$$\frac{\partial S}{\partial b} = -2b \sum_{i} X_i \varepsilon_i.$$

If $X_i \not\perp \varepsilon_i$, then the estimator will be biased. The technical solution is to replace X_i (here only, not in the model) by a variable linked with X_i but not with ε_i .

For example, the age of a compagny is correlated to its size, but not perfectly.

The main limitation are weak instruments : the link is to weak to estimate well the effect of X_i .

Instruments	Linear model
AutoRegressive model	Instruments
Generalized method of moments	Heteroskedasticity

You can give instruments to the plm function :

plm(Y~X, data = db, instruments = ~Z)

Instruments	Linear model
AutoRegressive model	Instruments
Generalized method of moments	Heteroskedasticity

Heteroskedasticity

$$\hat{b} = \frac{Cov(X, Y)}{Var(X)} = \frac{\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})}{\sum_{i=1}^{n} (X_i - \overline{X})^2}$$

The denominator is the estimator of $var(\varepsilon)$ under the assumption of homoskedasticity (and independence). The 2SLS estimates first this denominator, and then plug it in the definition of \hat{b} .

Instruments	Linear model
AutoRegressive model	Instruments
Generalized method of moments	Heteroskedasticity

Heteroskedasticity

$$\hat{b} = \frac{Cov(X, Y)}{Var(X)} = \frac{\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})}{\sum_{i=1}^{n} (X_i - \overline{X})^2}$$

The denominator is the estimator of $var(\varepsilon)$ under the assumption of homoskedasticity (and independence). The 2SLS estimates first this denominator, and then plug it in the definition of \hat{b} .

Lags

Include lags in the model and/or estimate a second model for ε

$$Y_{i,t} = rY_{i,t-1} + a + bX_{i,t} + \varepsilon_{i,t}$$

AutoRegressive model : AR(p)

In AutoRegressive models, ε_t depends directly on its past.

AR model

$$\varepsilon_t = a_1 \varepsilon_{t-1} + a_2 \varepsilon_{t-2} + \dots + a_p \varepsilon_{t-p} + e_t$$
$$\Leftrightarrow (1 - a_1 L - a_2 L^2 + \dots - a_p L^p) \varepsilon_t = A(L) \varepsilon_t = e_t$$

- $a_0 = 1$ by definition and e_t is iid.
- p is the order of the AR : how long the past affects the present.
- the polynomial A(x) has no unit root.

Theorem

If ε_t is a AR(p), then A(x) has no unit root and ε_t is stationary.

・ 「「「」 ト ・ ニ ト ・ ・ ニ ト

PACF

Partial autocorrelation function

Suppose we don't know the order p of the model :

$$\varepsilon_t = a_1 \varepsilon_{t-1} + a_2 \varepsilon_{t-2} + \dots + a_p \varepsilon_{t-p} + e_t$$

How to find p? We consider all the nested models of order $k \in \mathbb{N}*$. PACF(k) is the coefficient of the last variable of the linear model explaining ε_t by its k past values.

$$\varepsilon_t = \hat{a}_1 \varepsilon_{t-1} + \hat{a}_2 \varepsilon_{t-2} + \dots + PACF(k) \varepsilon_{t-k} + e_t$$

Theorem

If ε_t is a AR(p) then $PACF(p) \neq 0$ and for any k > p, PACF(k) = 0.

PACF

Orthogonality

Theorem

If ε_t is a AR(p) then $PACF(p) \neq 0$ and for any k > p, PACF(k) = 0.

$$\varepsilon_t = \hat{a}_1 \varepsilon_{t-1} + \hat{a}_2 \varepsilon_{t-2} + \dots + \hat{a}_p \varepsilon_{t-p} + e_t$$
$$\varepsilon_t - \hat{a}_1 \varepsilon_{t-1} - \hat{a}_2 \varepsilon_{t-2} - \dots - \hat{a}_p \varepsilon_{t-p} = e_t$$

æ

PACF

Orthogonality

Theorem

If ε_t is a AR(p) then $PACF(p) \neq 0$ and for any k > p, PACF(k) = 0.

$$\varepsilon_t = \hat{a}_1 \varepsilon_{t-1} + \hat{a}_2 \varepsilon_{t-2} + \dots + \hat{a}_p \varepsilon_{t-p} + e_t$$
$$\varepsilon_t - \hat{a}_1 \varepsilon_{t-1} - \hat{a}_2 \varepsilon_{t-2} - \dots - \hat{a}_p \varepsilon_{t-p} = e_t$$

then any further lag is orthogonal to e_t

Further lags are instruments

$$e_t \perp \varepsilon_{t-p-k} \quad \forall k > 0$$

- **1 1 1 1 1**

13/16

 $\mathbf{H}^{2}\mathbf{K}$

- 2 AutoRegressive model
- **3** Generalized method of moments

3) J

< 17 ▶

Generalized method of moments

GMM are designed to estimate any model where the parameters θ can be defined as solutions of an equation $\mathbb{E}[m(\theta, X_i)] = 0$ with $dim(m) \ge dim(\theta)$. The simple linear model writes :

$$Y_i = a + bX_i + \varepsilon_i$$
 with $\mathbb{E}[\varepsilon_i] = 0$

that is

$$\mathbb{E}[1(Y_i - a + bX_i)] = 0 \text{ and } \mathbb{E}[X'_i(Y_i - a + bX_i)] = 0$$

and with instruments :

$$\mathbb{E}[1(Y_i - a + bX_i)] = 0 \text{ and } \mathbb{E}[Z'_i(Y_i - a + bX_i)] = 0$$

You can also add more instruments than X's. H^2K

PGMM function

not the package PGMM! suppose you want to estimate the model

$$Y_{i,t} = a + b Y_{i,t-1} + c X_{i,t} + d X_{i,t-1} + \varepsilon_{i,t}$$

using the lags of Y and X further than 1 (for example from 2 to 10) as GMM instruments and some classical instrument Z. The pgmm function has 3 parts for the model, separated by |

- the model itself Y lag(Y)+X+lag(X)
- the gmm instruments lag(Y+X,2:10)
- 3 the classical instruments Z

```
output <- pgmm(Y ~lag(Y)+X+lag(X)|lag(Y+X,2:10)|Z,
data=db,index=c("Company_Name","year"),
effect = "twoways", model = "twosteps")
summary(output)
```