Panel models

Hugo Harari-Kermadec

EPOG Econometrics

Oct. 22, 2020

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

・ロト・日本・日本・日本・日本・日本の人で

$\mathbf{H}^{2}\mathbf{K}$

・ロト・日本・日本・日本・日本・日本の人で

$\mathbf{H}^{2}\mathbf{K}$

Panel data

indexed be both individual and time : $Y_{i,t}$.

panel<- read.csv("./panel_large.csv", header=TRUE,sep=",", dec="
panel_toy<-panel %>% select(Company_Name,year,marketcap)
head(panel_toy)

	Company_Name	year	marketcap	IQ_TOTAL_ASSETS
1	Pfizer Inc.	1994	24316.5977	11099.000
2	Verizon Communications Inc.	1994	21701.4941	24271.800
3	Exxon Mobil Corporation	1994	75418.4297	87862.000
4	Chevron Corporation	1994	29080.7754	34407.000
5	Time Warner Inc.	1994	659.8445	148.288
6	Motors Liquidation Company	1994	52889.3242	198598.700

Panel data

Many data on the same individual : $Y_{i,t}$, $Y_{i,t+1}$, $Y_{i,t+2}$

```
panel_toy<-panel_toy %>% arrange(Company_Name)
head(panel_toy)
```

	Company_	Name	year	marketcap	IQ_TOTAL_ASSETS
1	AT&T C	Corp.	1994	78543.06	79262
2	AT&T C	Corp.	1995	103073.28	62395
3	AT&T C	Corp.	1996	70279.82	55382
4	AT&T C	Corp.	1997	99587.03	61095
5	AT&T C	Corp.	1998	132833.48	59550
6	AT&T C	Corp.	1999	162363.52	169406

Individuals are different $\Rightarrow Y_{i,t}$ is likely to change with *i*.

Panel data

 $Y_{i,t}$ is very dependent of $Y_{i,t+1}$. We should not use a standard linear model.

$$Y_{i,t} = a + bX_{i,t} + \varepsilon_{i,t} \iff Y_{i,t} - a - bX_{i,t} = \varepsilon_{i,t}$$

The residuals are not likely to be iid.

Pooled model

It's the simple linear model : as if there was no panel. It assumes that each individual behave exactly as the others.

$$Y_{i,t} = a + bX_{i,t} + \varepsilon_{i,t}$$

Or more precisely, that every significative specificity is captured by the Xs. Not very likely.

Pooled model

It's the simple linear model : as if there was no panel. It assumes that each individual behave exactly as the others.

$$Y_{i,t} = a + bX_{i,t} + \varepsilon_{i,t}$$

Or more precisely, that every significative specificity is captured by the Xs. Not very likely.

Theorem : under the following hypothesis

- H_1 : Columns of X are linearly independent,
- H_2 : $\varepsilon_{i,t}$ residuals have 0 expectation and are uncorrelated with $X_{i,t}$.

 H_3 : $\varepsilon_{i,t}$ residuals are uncorrelated with common variance σ^2 . The OLS estimator is unbiased and as minimum variance among linear estimators.

Breaking the panel?

An alternative approach is to build a specific model for each individual

$$Y_{i,t} = a_i + b_i X_{i,t} + \varepsilon_{i,t}$$

or for each year (but not both!)

$$Y_{i,t} = a_t + b_t X_{i,t} + \varepsilon_{i,t}$$

Taking into account the panel

We can controlled for unobserved constant characteristics of individuals (and/or years : crisis, boom) with dummies.

$$Y_{i,t} = a_i + bX_{i,t} + \varepsilon_{i,t}$$

Fixed effects vs. random effects

- If a_i and $X_{i,t}$ are correlated, it's a fixed effect model
- If a_i and $X_{i,t}$ are not correlated, it's a random effect model

Panel package

9/1

install.packages("plm")
library("plm")

.0/1

・ロト・(型ト・(型ト・(型ト・(ロト)

 $\mathbf{H}^{2}\mathbf{K}$

Intercepts

We introduce an intercept for each individual. This forbids to have an global intercept : $Y_{i,t} = a_0 + a_i + bX_{i,t} + \varepsilon_{i,t}$ $\Leftrightarrow Y_{i,t} = a_0 \times 1 + \sum_j a_j \times 1_{i=j} + bX_{i,t} + \varepsilon_{i,t}$ and $1 = \sum_j 1_{j=i}$ because every data refers to some individual.

Intercepts

We introduce an intercept for each individual. This forbids to have an global intercept : $Y_{i,t} = a_0 + a_i + bX_{i,t} + \varepsilon_{i,t}$ $\Leftrightarrow Y_{i,t} = a_0 \times 1 + \sum_j a_j \times \mathbb{1}_{i=j} + bX_{i,t} + \varepsilon_{i,t}$ and $1 = \sum_j \mathbb{1}_{j=i}$ because every data refers to some individual.

The fixed effect model is equivalent to a Least Squares Dummy Variables (LSDV) model :

$$Y_{i,t} = \sum_{j} a_j \times \mathbb{1}_{i=j} + bX_{i,t} + \varepsilon_{i,t}$$

Multicolinearity between a_i and $X_{i,t}$

- a_i and $X_{i,t}$ can be correlated, but not multicolinear
- therefore $X_{i,t}$ can't be constant with time.
- For example, you can't include the sector in the Xs.

Multicolinearity between a_i and $X_{i,t}$

- a_i and $X_{i,t}$ can be correlated, but not multicolinear
- therefore $X_{i,t}$ can't be constant with time.
- For example, you can't include the sector in the Xs.

The fixed effect a_i captures all of the time invariant individual specificity. That's why you can't include a time invariant $X_{i,t}$ (actually a X_i). And then if $Y_{i,t}$ changes over time, it can only be because of the variation of $X_{i,t}$.

The model $Y_{i,t} = a_i + bX_{i,t} + \varepsilon_{i,t}$ estimates the effect of X on Y within each country (assuming it's the same for every country). To work well, we need Xs that vary strongly with times.

Fixed effect panel model estimation

$$Y_{i,t} = a_i + bX_{i,t} + \varepsilon_{i,t}$$

model.fe<-plm(marketcap~IQ_TOTAL_ASSETS,data=panel_toy, index=c("Company_Name","year"),model="within") summary(model.fe) fixef(model.fe)

4/1

 $\mathbf{H}^{2}\mathbf{K}$

・ロト・日本・日本・日本・日本・日本

Random effects $Y_{i,t} = a + bX_{i,t} + A_i + \varepsilon_{i,t}$

For the random effect model, we suppose that A_i is random, therefore uncorrelated with everything (but constant across time).

Random effect panel model estimation

$$Y_{i,t} = A_i + bX_{i,t} + \varepsilon_{i,t}$$

model.re<-plm(marketcap~IQ_TOTAL_ASSETS,data=panel_toy, index=c("Company_Name","year"),model="random") summary(model.re)

Hausman test : RE vs. FE

Random effect are the null assumption (0 correlation between a_i and $X_{i,t}$) If the p-value is small, we reject the null and choose the Fixed effect model. But then we can't use any time invariant X.

phtest(model.fe,model.re)

Fisher test

Suppose I have a decent model :

model.fe<-plm(marketcap~IQ_TOTAL_ASSETS)</pre>

Should I add variables? For example

model.fe.time<-plm(marketcap~IQ_TOTAL_ASSETS+factor(year))</pre>

A Fisher test compares two models (not only panel models)

pFtest(model.fe.time,model.fe)

If p-value <0.05, we reject the null explanatory power of the new variables \Rightarrow keep them. If p-value is large, come back to the smaller model.

Fisher test

F test for individual effects

data: marketcap ~ IQ_TOTAL_ASSETS + factor(year)
F = 2.51, df1 = 17, df2 = 158, p-value = 0.001516
alternative hypothesis: significant effects

p-value < 0.05 so we keep the year dummies.

Breusch-Godfrey/Wooldridge test for autocorrelation in residuals

The model is valid if the residuals are independent and identically distributed

 \Rightarrow no correlation among them (and homosked asticity)

$$Y_{i,t} = a_i + bX_{i,t} + \varepsilon_{i,t}$$

For panel data, there is a strong risk of dependence between $\varepsilon_{i,t}$ and $\varepsilon_{i,t+1}$

```
pbgtest(model.fe)
```

If p-value < 0.05, we reject the null correlation

Breusch-Godfrey/Wooldridge test for autocorrelation in residuals

```
data: marketcap ~ IQ_TOTAL_ASSETS
chisq = 90.503, df = 11, p-value = 1.329e-14
alternative hypothesis: serial correlation in idiosyncratic
```

p-value $<<<0.05 \Rightarrow$ the model is not valid, there is more to explain.

Standard-errors are underestimated \Rightarrow significativity of explanatory variables is overestimated

Intermediate report

For November 12th, prepare a 5 to 8 pages report

- a short explanation of the paper results
- a short presentation of the databases (Z1, compustat and WIOD)
- choose a variable of one of these databases and study it from a quantification perspective
- replicate figures 1, 2 and 5