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Simple linear model

Let’s consider 2 variables, X, the experience, and Y the income.
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Least squares line

The line that minimizes the vertical distance with the data.
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Least squares line

The line that minimizes the vertical distance with the data.
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for any line with equation y = ax+ b, the vertical distance with
each individual data is: Y; — (aX; + b).
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Linear model

The formal model writes
Yi =b+ aXi + &5

where ¢; is an unobserved individual variation from the model.
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Linear model
The formal model writes
Yi =b+ aXi +&;

where ¢; is an unobserved individual variation from the model.
The OLS estimators @ and b minimize:

. 9 . \2
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Linear model
The formal model writes
Yi =b+ aXi +&;

where ¢; is an unobserved individual variation from the model.
The OLS estimators @ and b minimize:

~

We call fitted values Y; = b+ aX;
and residuals £, =Y, — YV, = Y; — b— aX,.
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The OLS estimators & and b minimize:

The best estimator for a is the correlation:

Cov(X,Y) _ Y (Xi—X)(Y;—Y)
Var(X) > (X — X)?

and the best estimator for b sets the intercept:

a=

b=7Y - aX.
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The OLS estimators & and b minimize:

The best estimator for a is the correlation:

Cov(X,Y) _ Y (Xi—X)(Y;—Y)

a=

Var(X) Yo (X — X)?

and the best estimator for b sets the intercept:

b=7Y - aX.

The variance o2 of ¢ is estimated by

n
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Vectors

Write the individual equations one above the other:

Y1 = b+aXi+e
Yo = b+ aXo+e9

It builds vectors:
Y= (1X)x (b, a)’ + &,

with Y= (Y1,...,Y,), E=(e1,...,e,), 1=(1,...,1) and
X=(Xi,...,X,) all in R™.
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(b = (1 X)(1 X)) (1 XY
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With these notations, the least squares estimator writes

(b = (1 X)(1 X)) (1 XY

Under the following hypothesis

Hy : Columns of X are linearly independent,

Hy : e; errors have 0 expectation and are uncorrelated with X;.
Hs : g; errors are uncorrelated with common variance o2.

The OLS estimator is unbiased and as minimum variance
among linear estimators.
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Multilinear model

It’s the same, with more explanatory variables:

Yi=b+aXn+ aXp+- -+ axXik + &
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Multilinear model

It’s the same, with more explanatory variables:
Yi=b+ aXn+ aXe+- - +axXik + &

b is incorporated as ag, with X;0 =1

K

Yi = Z asz-k + &5
k=0

= (Xi07 .. .,XZ'K)(QO, ey CZK)/ + &5
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Multilinear model

It’s the same, with more explanatory variables:
Yi=b+ aXn+ aXe+- - +axXik + &

b is incorporated as ag, with X;0 =1

K

Yi = Z asz-k + &5
k=0

= (Xio,...,XiK)(ag,...,aK)/-i—Ei
Vertically, for n data
Y=X0+¢,
with Y=(Y1,...,Y,) e R", £ = (e1,...,e,) € R" and
X= (Xl, .. .,Xn)/ S M"%K"Fl‘
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Tests

One important test is the significance of the effect of each
explanatory variable:
Assuming that the &; are normally distributed,

a~N(a,d?(XX)™h

and with ;5 = nffl{gil
o — Y T(n— K—1), where 61, = C/TE(X/X)EICI‘

Ok

A 1t test can then test Hy: ap = 0.
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Experience and Gender

Gender— (1) ifl the individual is a female is & dummy,
else

1m3<-1m(Income ~ Exp + Gender) ;summary(1m3)

Coefficients:

Estimate Std.Error t value Pr(>ltl)
(Intercept) 1446.202 26.530 54.511 < 2e-16 **x
Exp 20.247 1.032 19.612 < 2e-16 *x*x*
Gender -99.735 23.288 -4.283 2.88e-05 **x

Signif. codes: 0 ‘*x*x’> 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ¢ > 1

Residual standard error: 160.6 on 197 degrees of freedom
Multiple R-squared: 0.6989,Adjusted R-squared: 0.6958
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Experience and Gender
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Experience and Gender
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Im(Income ~ Exp + Gender +Exp*Gender)




Information
Nested models

AnOVa

Analysis of Variance

Yi=b+ aX;+ ¢

The AnOVa tests how much of the variance of Y is explained by
X, and how much remains:

(Y=Y =) (Xi—X)*+) &

7
Assuming everything is gaussian

& dim(X)
n—1—dim(X) a2 (X; — X)?

~ F(n—1—dim(X),dim(X))



Information

Nested models

AnOVa and Im()

1m5<-1m(Income ~ Exp +Exp2 + Gender + Gender*Exp)
anova(1mb)

Response: Income
Df Sum Sq Mean Sq F value Pr(>F)

Exp 1 11319023 11319023 1068.2138 <2e-16 *x**
Exp2 1 2386337 2386337 225.2065 <2e-16 *x**
Gender 1 1100248 1100248 103.8340 <2e-16 ***
Exp:Gender 1 1380 1380 0.1302 0.7186

Residuals 195 2066262 10596

Signif. codes: 0 ‘*x*x’ 0.001 ‘*%> 0.01 ‘x> 0.05 ‘.’ 0.1 “ ’ 1
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AnOVa
AnOVa for nested models
Income = Fxp+ Gender
Income = FExp+ Exp2+ Gender

—&— small model
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AnOVa for nested models

> anova(lmA,1mB)
Analysis of Variance Table

Model 1: Income ~ Experience + Gender
Model 2: Income ~ Experience + Experience2 + Gender

Res.Df RSS Df Sum of Sq F Pr(>F)
1 197 5396845
2 196 2174223 1 3222622 290.51 < 2.2e-16 ***

Signif. codes: 0 ‘*x*x’ 0.001 ‘*%> 0.01 ‘x> 0.05 ‘.’ 0.1 “ ’ 1
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