Time series, Stationarity

Hugo Harari-Kermadec

EPOG Econometrics

Nov. 14, 2019

◆□▶ ◆舂▶ ◆注≯ ◆注≯ □注□

- 2 Non stationarity
- 3 Dickey-Fuller test strategy

White noise MA(q) AR

1 Stationarity

- White noise
- MA(q)
- AR

2 Non stationarity

3 Dickey-Fuller test strategy

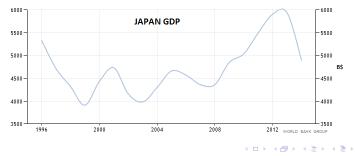
White noise MA(q)AR

Definition: stationarity

 X_t is said stationary if and only if

- $\mathbb{E}[X_t]$ and $Var(X_t)$ are constant.
- Covariance of X_t and X_{t-h} does not depend on $t \colon Cov(X_t, X_{t+h}) = \gamma(h)$.

This means that X_t "behavior" does not change in time.



$\begin{array}{c} \textbf{White noise} \\ \textbf{MA}(\textbf{q}) \\ \textbf{AR} \end{array}$

White noise

The simplest time series model is the white noise:

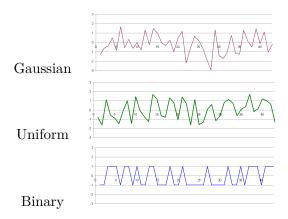
 $X_t = \varepsilon_t$ with ε_t i.i.d.

The past have no effect on present. The series has no memory.

Theorem

White noise are stationary.

 $\begin{array}{c} \text{White noise} \\ \text{MA}(\mathbf{q}) \\ \text{AR} \end{array}$



White noise MA(q) AR

MA(q) model

MA models some dependence: shocks perpetuate for a while

MA model

The series is a weighted mean of previous shocks.

$$X_t = \varepsilon_t + m_1 \varepsilon_{t-1} + m_2 \varepsilon_{t-2} + \dots + m_q \varepsilon_{t-q}$$

• $m_0 = 1$ by definition.

• q is the order of the MA: how long the shock effect lasts.

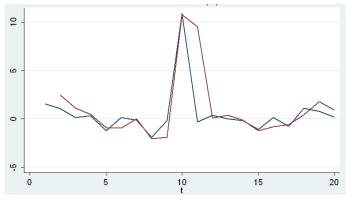
Theorem

MA(q) series are stationary.

White noise MA(q) AR

MA(1)

$$X_t = \varepsilon_t + 0.9\varepsilon_{t-1}$$



White noise (blue) and MA(1) with $m_1 = 0.9$ (red)

(日本) (日本)

Autocorrelation function

MA(q)

The autocorrelation is the covariance of X_t with its past, normalized by the variance:

$$ACF(k) = \frac{Cov(X_t, X_{t-k})}{Var(X_t)}$$

The ACF gives the order of the MA(q):

Theorem

If
$$X_t$$
 is a $MA(q)$ then $ACF(q) \neq 0$ and for any $k > q$,
 $ACF(k) = 0$.

White noise MA(q) AR

$$ACF(0) = \frac{Cov(X_t, X_t)}{Var(X_t)} = \frac{Var(X_t)}{Var(X_t)} = 1$$

White noise MA(q) AR

$$ACF(0) = \frac{Cov(X_t, X_t)}{Var(X_t)} = \frac{Var(X_t)}{Var(X_t)} = 1$$

$$ACF(1) = \frac{Cov(X_t, X_{t-1})}{Var(X_t)}$$

=
$$\frac{Cov(\varepsilon_t + 0.9\varepsilon_{t-1}, \varepsilon_{t-1} + 0.9\varepsilon_{t-2})}{Var(\varepsilon_t + 0.9\varepsilon_{t-1})}$$

=
$$\frac{Cov(0.9\varepsilon_{t-1}, \varepsilon_{t-1})}{Var(\varepsilon_t) + 0.9^2 Var(\varepsilon_{t-1})} = \frac{0.9}{1 + 0.9^2} = 0.55$$

White noise MA(q) AR

$$ACF(0) = \frac{Cov(X_t, X_t)}{Var(X_t)} = \frac{Var(X_t)}{Var(X_t)} = 1$$

$$ACF(1) = \frac{Cov(X_t, X_{t-1})}{Var(X_t)}$$
$$= \frac{Cov(\varepsilon_t + 0.9\varepsilon_{t-1}, \varepsilon_{t-1} + 0.9\varepsilon_{t-2})}{Var(\varepsilon_t + 0.9\varepsilon_{t-1})}$$
$$= \frac{Cov(0.9\varepsilon_{t-1}, \varepsilon_{t-1})}{Var(\varepsilon_t) + 0.9^2 Var(\varepsilon_{t-1})} = \frac{0.9}{1 + 0.9^2} = 0.55$$

$$ACF(2) = \frac{Cov(X_t, X_{t-2})}{Var(X_t)} = \frac{0}{1+0.9^2} = 0$$

White noise MA(q) AR

$$ACF(0) = \frac{Cov(X_t, X_t)}{Var(X_t)} = \frac{Var(X_t)}{Var(X_t)} = 1$$

$$ACF(1) = \frac{Cov(X_t, X_{t-1})}{Var(X_t)}$$

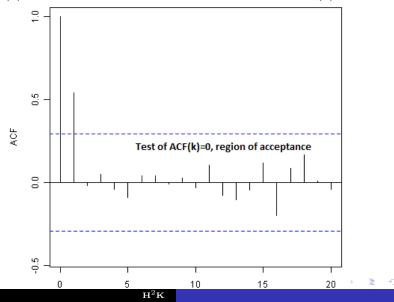
=
$$\frac{Cov(\varepsilon_t + 0.9\varepsilon_{t-1}, \varepsilon_{t-1} + 0.9\varepsilon_{t-2})}{Var(\varepsilon_t + 0.9\varepsilon_{t-1})}$$

=
$$\frac{Cov(0.9\varepsilon_{t-1}, \varepsilon_{t-1})}{Var(\varepsilon_t) + 0.9^2 Var(\varepsilon_{t-1})} = \frac{0.9}{1 + 0.9^2} = 0.55$$

$$ACF(2) = \frac{Cov(X_t, X_{t-2})}{Var(X_t)} = \frac{0}{1+0.9^2} = 0$$
$$ACF(3) = \frac{Cov(X_t, X_{t-3})}{Var(X_t)} = \frac{0}{1+0.9^2} = 0 \dots$$

StationarityWhite mNon stationarityMA(q)Dickey-Fuller test strategyAR

MA(1) autocorrelation function. $m_1 = 0.9$ then ACF(1)=0.55



White noise MA(q) AR

The Lag operator: L

Let's L be the operator that moves the time index to the past of 1 unit: $L\varepsilon_t = \varepsilon_{t-1}$ and $LX_t = X_{t-1}$

$$X_t = \varepsilon_t + m_1 \varepsilon_{t-1} + m_2 \varepsilon_{t-2} + \dots + m_q \varepsilon_{t-q}$$

$$X_t = \varepsilon_t + m_1 L \varepsilon_t + m_2 L^2 \varepsilon_t + \dots + m_q L^q \varepsilon_t$$

$$X_t = (1 + m_1 L + m_2 L^2 + \dots + m_q L^q) \varepsilon_t$$

The order of the polynomial in L is the same as the order of the MA.

White noise MA(q)AR

AR(1) model

 X_t is AutoRegressive of order 1, if it depends directly on its past.

AR(1) model

$$X_t = a_1 X_{t-1} + \varepsilon_t$$

$$\Leftrightarrow X_t - a_1 X_{t-1} = \varepsilon_t$$

$$\Leftrightarrow (1 - a_1 L) X_t = \varepsilon_t$$

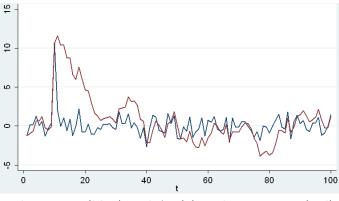
(日本)

3)) J

White noise MA(q)AR

AR(1)

$$X_t = 0.9 \ X_{t-1} + \varepsilon_t$$



White noise (blue) and AR(1) with $a_1 = -0.9$ (red)

White noise MA(q)AR

æ

AR(1) are $MA(\infty)$

$$X_t = a_1 X_{t-1} + \varepsilon_t$$

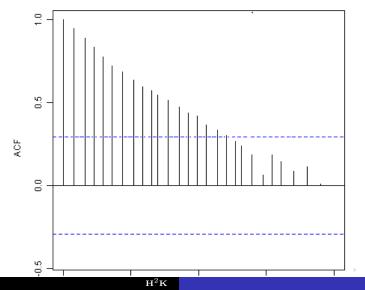
$$(1 - a_1 L)X_t = \varepsilon_t$$

$$X_t = (1 - a_1 L)^{-1}\varepsilon_t$$

$$X_t = (1 + a_1 L + a_1^2 L^2 + a_1^3 L^3 + \dots)\varepsilon_t$$

$$X_t = \varepsilon_t + a_1 \varepsilon_{t-1} + a_1^2 \varepsilon_{t-2} + a_1^3 \varepsilon_{t-3} + \dots$$

The autocorrelation is no very informative on AR's: $X_t = 0.9 \ X_{t-1} + \varepsilon_t$



StationarityWhite noiseNon stationarityMA(q)Dickey-Fuller test strategyAR

What if $a_1 = 1$?

The inversion $(1 - a_1 L)^{-1}$ only works if $|a_1| < 1$ Note that $a_1 < 0$ is strange and $a_1 > 1$ is absurd, so $a_1 \in]0; 1]$.

Unit root

What if $a_1 = 1$? Then the binomial in L, $(1 - a_1 L)$ has root $-1/a_1 = -1$. Non-stationary.

 $(1-L)X_t = \varepsilon_t \quad \Leftrightarrow X_t = X_{t-1} + \varepsilon_t \quad \Rightarrow Var(X_t) = Var(X_{t-1}) + \sigma_{\varepsilon}^2$

 $Var(X_t)$ can't be constant.

Theorem

If X_t is a AR(1), then the binomial $1 - a_1L$ does not have 1 (nor -1) for root and X_t is stationary.

AR(p) model

In AutoRegressive models, X_t depends directly on its past.

AR model

$$X_t = a_1 X_{t-1} + a_2 X_{t-2} + \dots + a_p X_{t-p} + \varepsilon_t$$

$$\Rightarrow (1 - a_1 L - a_2 L^2 + \dots - a_p L^p) X_t = A(L) X_t = \varepsilon_t$$

- $a_0 = 1$ by definition.
- *p* is the order of the AR: how long the past affects the present.
- the polynomial A(x) has no unit root.

Theorem

If X_t is a AR(p), then A(x) has no unit root and X_t is stationary.

1 Stationarity

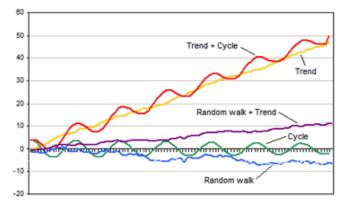
- 2 Non stationarity
 - GDP
 - Random walk?

GDP Random walk?

(日)

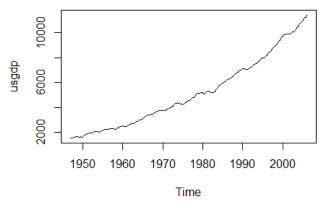
3)) J

Non stationarities: seasonality, tend, random walk



GDP Random walk?

US GDP



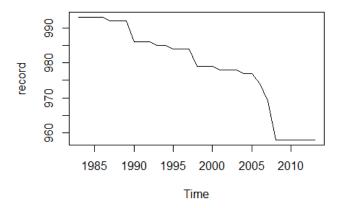
Clearly non stationary.

GDP Random walk?

æ

< 17 ▶

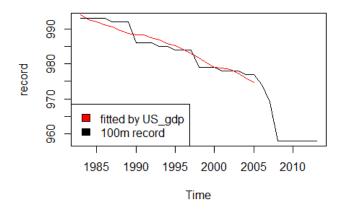
100m record



GDP Random walk?

æ

100m record



```
Call:
lm(formula = record ~ year_gdp)
```

Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 1.012e+03 1.778e+00 569.40 < 2e-16 *** year_gdp -8.513e-04 5.379e-05 -15.83 3.81e-13 ***

Multiple R-squared: 0.9226, Adjusted R-squared: 0.919

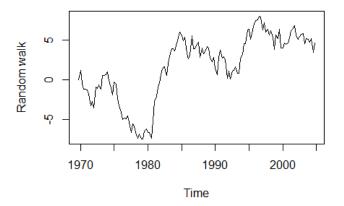
GDP Random walk?

æ

-≺ ≣⇒

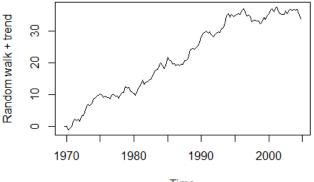
• • • • • • • • • •

Random walk



GDP Random walk?

Random walk + trend



 H^2K

GDP Random walk?

æ

- 日 ト - 4 同 ト - 4 目 ト - 4 目 ト

Random walk model

 $AR(1) \mod l$

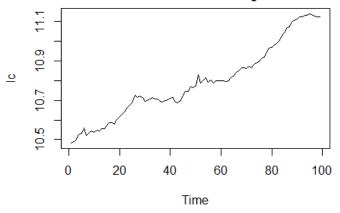
$$X_t = -a_1 X_{t-1} + \varepsilon_t$$
$$\Leftrightarrow (1 + a_1 L) X_t = \varepsilon_t$$

Unit root

$$a_1 = -1 ! \Rightarrow L(X_t) = \varepsilon_t$$

Stationarity Full model (Trend: 3) Non stationarity Drift model (2) Dickey-Fuller test strategy Simple model (none: 1)

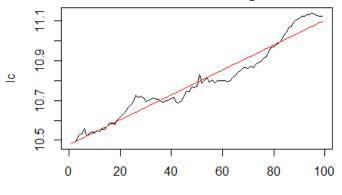
Denmark real consumption



Non stationary \Rightarrow Random walk?

Stationarity Full model (Trend: 3) Non stationarity Drift model (2) Dickey-Fuller test strategy Simple model (none: 1)

Denmark real consumption



Time Non stationary \Rightarrow Trend?

Consider the model:

$$Z_t = \alpha + \beta t - a_1 Z_{t-1} + \varepsilon_t$$

(1 - L)Z_t = $\alpha + \beta t + (-a_1 - 1) Z_{t-1} + \varepsilon_t$
(1 - L)Z_t = $\alpha + \beta t + \rho Z_{t-1} + \varepsilon_t$

Looks like a linear model, but behaves very differently if $\rho = 0$ ("the null"). And again differently if $\alpha \neq 0$ and/or $\beta \neq 0$ So we need a specific test (not a T-test) in each situation. StationarityFull model (Trend: 3)Non stationarityDrift model (2)Dickey-Fuller test strategySimple model (none: 1)

- > library(urca)
- > df=ur.df(X,type="trend")
- > summary(df)

lm(formula = z.diff ~ z.lag.1 + 1 + tt + z.diff.lag)

Estimate Std. Error t value Pr(>|t|) (Intercept) 0.3227245 0.1502083 2.149 0.0327 * z.lag.1 -0.0329780 0.0166319 -1.983 0.0486 * tt -0.0004194 0.0009767 -0.429 0.6680 z.diff.lag -0.0230547 0.0652767 -0.353 0.7243

Last column from linear model \rightarrow false if unit-root.

StationarityFull model (Trend: 3)Non stationarityDrift model (2)Dickey-Fuller test strategySimple model (none: 1)

$$(1-L)Z_t = \alpha + \beta t + \rho Z_{t-1} + \varepsilon_t$$

Output continues with adequate stats:

Value of test-statistic is: -1.9828 1.8771 2.7371

- t-value for $\rho = 0$
- Fisher stat for $(\rho, \alpha, \beta) = (0, 0, 0)$
- Fisher stat for $(\rho, \beta) = (0, 0)$

Critical values for test statistics:

1pct5pct10pcttau3-3.99-3.43-3.13phi26.224.754.07phi38.436.495.47

Stationarity Non stationarity Dickey-Fuller test strategy Simple model (none: 1)

$$(1-L)Z_t = \alpha + \beta t + \rho Z_{t-1} + \varepsilon_t$$

Value of test-statistic is: -1.9828 1.8771 2.7371 1pct 5pct 10pct tau3 -3.99 -3.43 -3.13 phi3 8.43 6.49 5.47

If the test stat for $\rho = 0$ is larger than tau³ then accept the unit-root. No absolute values here!

In this example, -1.98>-3.13, we accept $\rho = 0$ at 90%.

- If we accept $\rho = 0$, check that the full model is ok.
 - If the test stat [2.7] for (ρ, β) is larger than phi3 [5.47], then we reject $(\rho, \beta) = (0, 0)$, the full model is ok [No].
 - If not, then $\beta = 0$ and the full model is wrong. Move to model 2 (no trend).
- If we reject $\rho = 0$, it's a classical lineal model, check the trend with the first table.

Stationarity Full model (Trend: 3) Non stationarity Drift model (2) Dickey-Fuller test strategy Simple model (none: 1)

> summary(ur.df(y=lc,type='drift')
lm(formula = z.diff ~ z.lag.1 + 1 + z.diff.lag)

Estimate Std. Error t value Pr(>|t|) (Intercept) 0.0038899 0.0841706 0.046 0.963 z.lag.1 0.0003199 0.0078044 0.041 0.967 z.diff.lag -0.1240402 0.1028634 -1.206 0.231

Value of test-statistic is: 0.041 11.1569

Critical values for test statistics: 1pct 5pct 10pct tau2 -3.51 -2.89 -2.58 phi1 6.70 4.71 3.86

(日本) (日本) (日本)

Stationarity Non stationarity Dickey-Fuller test strategy Simple model (none:

$$(1-L)Z_t = \alpha + \rho Z_{t-1} + \varepsilon_t$$

Value of test-statistic is: 0.041 11.1569

1pct 5pct 10pct

tau2 -3.51 -2.89 -2.58

phi1 6.70 4.71 3.86

If the test stat for $\rho = 0$ is larger than tau2 then accept the unit-root. No absolute values here!

In this example, 0.04 > -2.58, we accept $\rho = 0$ at 90%.

- If we accept $\rho = 0$, check that model 2 is ok.
 - If the test stat [11] is larger than phil [6.7], then we reject $(\rho, \alpha) = (0, 0)$, model 2 is ok [even at 99%].
 - If not, then $\alpha = 0$ and model 2 is wrong. Move to model 1 (no drift)

・ 同 ト ・ ヨ ト ・ ヨ ト

• If we reject $\rho = 0$, it's a classical lineal model, check the drift with the first table.

```
> summary(ur.df(y=lc,type='none'))
lm(formula = z.diff ~ z.lag.1 - 1 + z.diff.lag)
```

Estimate Std. Error t value Pr(>|t|) z.lag.1 0.0006805 0.0001433 4.749 7.24e-06 *** z.diff.lag -0.1243891 0.1020458 -1.219 0.226

Value of test-statistic is: 4.7485

```
Critical values for test statistics:
1pct 5pct 10pct
tau1 -2.6 -1.95 -1.61
```

StationarityFull model (Trend: 3)Non stationarityDrift model (2)Dickey-Fuller test strategySimple model (none: 1)

$$(1-L)Z_t = \rho Z_{t-1} + \varepsilon_t$$

Value of test-statistic is: 4.7485 1pct 5pct 10pct tau1 -2.6 -1.95 -1.61 If the test stat for $\rho = 0$ is larger than tau1 then accept the unit-root. No absolute values here! In this example, 4.74>-1.6, we accept $\rho = 0$ at 90%, model 1 is ok. All this can be done with more lags in the model (augmented DF model).

You can choose the lags: summary(ur.df(y=lc,lags=3, type='trend')) or leave it to R: summary(ur.df(y=lc,type='trend',selectlags = "AIC")) All the rest of the DF test strategy remains unchanged.