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Definition: stationarity
Xt is said stationary if and only if

E[Xt ] and Var(Xt) are constant.
Covariance of Xt and Xt−h does not depend on t:
Cov(Xt ,Xt+h) = γ(h) .

This means that Xt “behavior” does not change in time.
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White noise

The simplest time series model is the white noise:

Xt = εt with εt i.i.d.

The past have no effect on present. The series has no memory.

Theorem
White noise are stationary.
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MA(q) model

MA models some dependence: shocks perpetuate for a while

MA model
The series is a weighted mean of previous shocks.

Xt = εt + m1 εt−1 + m2 εt−2 + · · ·+ mq εt−q

m0 = 1 by definition.
q is the order of the MA: how long the shock effect lasts.

Theorem
MA(q) series are stationary.
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MA(1)
Xt = εt + 0.9εt−1

White noise (blue) and MA(1) with m1 = 0.9 (red)
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Autocorrelation function

The autocorrelation is the covariance of Xt with its past,
normalized by the variance:

ACF(k) = Cov(Xt ,Xt−k)

Var(Xt)

The ACF gives the order of the MA(q):

Theorem
If Xt is a MA(q) then ACF(q) 6= 0 and for any k > q,
ACF(k) = 0.
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Xt = εt + 0.9εt−1

ACF(0) =
Cov(Xt ,Xt)

Var(Xt)
=

Var(Xt)

Var(Xt)
= 1

ACF(1) =
Cov(Xt ,Xt−1)

Var(Xt)

=
Cov(εt + 0.9εt−1, εt−1 + 0.9εt−2)

Var(εt + 0.9εt−1)

=
Cov(0.9εt−1, εt−1)

Var(εt) + 0.92Var(εt−1)
=

0.9

1 + 0.92
= 0.55

ACF(2) =
Cov(Xt ,Xt−2)

Var(Xt)
=

0

1 + 0.92
= 0

ACF(3) =
Cov(Xt ,Xt−3)

Var(Xt)
=

0

1 + 0.92
= 0 …
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MA(1) autocorrelation function. m1 = 0.9 then ACF(1)=0.55
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The Lag operator: L
Let’s L be the operator that moves the time index to the past
of 1 unit: Lεt = εt−1 and LXt = Xt−1

Xt = εt + m1 εt−1 + m2 εt−2 + · · ·+ mq εt−q

Xt = εt + m1 Lεt + m2 L2εt + · · ·+ mq Lqεt

Xt = (1 + m1L + m2L2 + · · ·++mqLq)εt

The order of the polynomial in L is the same as the order of the
MA.
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AR(1) model

Xt is AutoRegressive of order 1, if it depends directly on its
past.

AR(1) model

Xt = a1 Xt−1 + εt

⇔ Xt − a1 Xt−1 = εt

⇔ (1− a1 L)Xt = εt
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AR(1)
Xt = 0.9 Xt−1 + εt

White noise (blue) and AR(1) with a1 = −0.9 (red)

H2K



Stationarity
Non stationarity

Dickey-Fuller test strategy

White noise
MA(q)
AR

AR(1) are MA(∞)

Xt = a1 Xt−1 + εt

(1− a1 L)Xt = εt

Xt = (1− a1 L)−1εt

Xt = (1 + a1 L + a2
1L2 + a3

1L3 + . . . )εt

Xt = εt + a1εt−1 + a2
1εt−2 + a3

1εt−3 + . . .
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The autocorrelation is no very informative on AR’s:
Xt = 0.9 Xt−1 + εt
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What if a1 = 1 ?
The inversion (1− a1 L)−1 only works if |a1| < 1
Note that a1 < 0 is strange and a1 > 1 is absurd, so a1 ∈]0; 1].

Unit root
What if a1 = 1? Then the binomial in L, (1− a1 L) has root
−1/a1 = −1. Non-stationary.

(1−L)Xt = εt ⇔ Xt = Xt−1+εt ⇒ Var(Xt) = Var(Xt−1)+σ2
ε

Var(Xt) can’t be constant.

Theorem
If Xt is a AR(1), then the binomial 1− a1L does not have 1
(nor -1) for root and Xt is stationary.
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AR(p) model
In AutoRegressive models, Xt depends directly on its past.

AR model

Xt = a1 Xt−1 + a2 Xt−2 + · · ·+ ap Xt−p + εt

⇔ (1− a1 L − a2 L2 + · · · − ap Lp)Xt = A(L) Xt = εt

a0 = 1 by definition.
p is the order of the AR: how long the past affects the
present.
the polynomial A(x) has no unit root.

Theorem
If Xt is a AR(p), then A(x) has no unit root and Xt is
stationary.
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Non stationarities:
seasonality, tend, random walk
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US GDP

Clearly non stationary.
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Call:
lm(formula = record ~ year_gdp)

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.012e+03 1.778e+00 569.40 < 2e-16 ***
year_gdp -8.513e-04 5.379e-05 -15.83 3.81e-13 ***

Multiple R-squared: 0.9226,Adjusted R-squared: 0.919
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Random walk model

AR(1) model

Xt = −a1 Xt−1 + εt

⇔ (1 + a1 L)Xt = εt

Unit root
a1 = −1 ! ⇒ L(Xt) = εt
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Denmark real consumption

Non stationary ⇒ Trend?
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Full model (Trend: 3)
Drift model (2)
Simple model (none: 1)

Consider the model:

Zt = α+ βt − a1Zt−1 + εt

(1− L)Zt = α+ βt + (−a1 − 1)Zt−1 + εt

(1− L)Zt = α+ βt + ρZt−1 + εt

Looks like a linear model, but behaves very differently
if ρ = 0 (“the null”).
And again differently if α 6= 0 and/or β 6= 0
So we need a specific test (not a T-test) in each situation.
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> library(urca)
> df=ur.df(X,type="trend")
> summary(df)

lm(formula = z.diff ~ z.lag.1 + 1 + tt + z.diff.lag)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.3227245 0.1502083 2.149 0.0327 *
z.lag.1 -0.0329780 0.0166319 -1.983 0.0486 *
tt -0.0004194 0.0009767 -0.429 0.6680
z.diff.lag -0.0230547 0.0652767 -0.353 0.7243

Last column from linear model → false if unit-root.
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(1− L)Zt = α+ βt + ρZt−1 + εt

Output continues with adequate stats:
Value of test-statistic is: -1.9828 1.8771 2.7371

t-value for ρ = 0

Fisher stat for (ρ, α, β) = (0, 0, 0)

Fisher stat for (ρ, β) = (0, 0)

Critical values for test statistics:
1pct 5pct 10pct

tau3 -3.99 -3.43 -3.13
phi2 6.22 4.75 4.07
phi3 8.43 6.49 5.47
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Full model (Trend: 3)
Drift model (2)
Simple model (none: 1)

(1− L)Zt = α+ βt + ρZt−1 + εt

Value of test-statistic is: -1.9828 1.8771 2.7371
1pct 5pct 10pct

tau3 -3.99 -3.43 -3.13
phi3 8.43 6.49 5.47
If the test stat for ρ = 0 is larger than tau3 then accept the
unit-root. No absolute values here!
In this example, -1.98>-3.13, we accept ρ = 0 at 90%.

If we accept ρ = 0, check that the full model is ok.
If the test stat [2.7] for (ρ, β) is larger than phi3 [5.47], then
we reject (ρ, β) = (0, 0), the full model is ok [No].
If not, then β = 0 and the full model is wrong. Move to
model 2 (no trend).

If we reject ρ = 0, it’s a classical lineal model, check the
trend with the first table.
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> summary(ur.df(y=lc,type='drift')
lm(formula = z.diff ~ z.lag.1 + 1 + z.diff.lag)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.0038899 0.0841706 0.046 0.963
z.lag.1 0.0003199 0.0078044 0.041 0.967
z.diff.lag -0.1240402 0.1028634 -1.206 0.231

Value of test-statistic is: 0.041 11.1569

Critical values for test statistics:
1pct 5pct 10pct
tau2 -3.51 -2.89 -2.58
phi1 6.70 4.71 3.86
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Full model (Trend: 3)
Drift model (2)
Simple model (none: 1)

(1− L)Zt = α+ ρZt−1 + εt

Value of test-statistic is: 0.041 11.1569
1pct 5pct 10pct

tau2 -3.51 -2.89 -2.58
phi1 6.70 4.71 3.86
If the test stat for ρ = 0 is larger than tau2 then accept the
unit-root. No absolute values here!
In this example, 0.04>-2.58, we accept ρ = 0 at 90%.

If we accept ρ = 0, check that model 2 is ok.
If the test stat [11] is larger than phi1 [6.7], then we reject
(ρ, α) = (0, 0), model 2 is ok [even at 99%].
If not, then α = 0 and model 2 is wrong. Move to model 1
(no drift)

If we reject ρ = 0, it’s a classical lineal model, check the
drift with the first table.
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> summary(ur.df(y=lc,type='none'))
lm(formula = z.diff ~ z.lag.1 - 1 + z.diff.lag)

Estimate Std. Error t value Pr(>|t|)
z.lag.1 0.0006805 0.0001433 4.749 7.24e-06 ***
z.diff.lag -0.1243891 0.1020458 -1.219 0.226

Value of test-statistic is: 4.7485

Critical values for test statistics:
1pct 5pct 10pct
tau1 -2.6 -1.95 -1.61
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Full model (Trend: 3)
Drift model (2)
Simple model (none: 1)

(1− L)Zt = ρZt−1 + εt

Value of test-statistic is: 4.7485
1pct 5pct 10pct

tau1 -2.6 -1.95 -1.61
If the test stat for ρ = 0 is larger than tau1 then accept the
unit-root. No absolute values here!
In this example, 4.74>-1.6, we accept ρ = 0 at 90%, model 1 is
ok.
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All this can be done with more lags in the model (augmented
DF model).
You can choose the lags:
summary(ur.df(y=lc,lags=3, type='trend'))
or leave it to R:
summary(ur.df(y=lc,type='trend',selectlags = "AIC"))
All the rest of the DF test strategy remains unchanged.
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