Basic statistics

Hugo Harari-Kermadec

EPOG - Econometrics

September, the 26th, 2019

◆□> ◆舂> ◆注> ◆注> 注目

Introduction Estimation

・ロト ・回ト ・ヨト ・ヨト

æ

Introduction Estimation

æ

- Start R
- $\bullet\,$ Clic in the consol (down left) and type $1{+}23$
- Set x < -3 and calculate x^2 .

æ

< □ ト < □ ト < 三 ト</p>

- Start R
- $\bullet\,$ Clic in the consol (down left) and type $1{+}23$
- Set x < -3 and calculate x^2 .
- Set income <- c(873,1050,1401,4102,2350) and calculate the mean, var, sd, max, min, range, sum, length.

- Start R
- $\bullet\,$ Clic in the consol (down left) and type $1{+}23$
- Set x < -3 and calculate x^2 .
- Set income <- c(873,1050,1401,4102,2350) and calculate the mean, var, sd, max, min, range, sum, length.
- and with age<-c(21,22,NA,51).

- Start R
- $\bullet\,$ Clic in the consol (down left) and type $1{+}23$
- Set x < -3 and calculate x^2 .
- Set income <- c(873,1050,1401,4102,2350) and calculate the mean, var, sd, max, min, range, sum, length.
- and with age<-c(21,22,NA,51).Try mean(age,na.rm=T)

- Start R
- $\bullet\,$ Clic in the consol (down left) and type $1{+}23$
- Set x < -3 and calculate x^2 .
- Set income <- c(873,1050,1401,4102,2350) and calculate the mean, var, sd, max, min, range, sum, length.
- and with age<-c(21,22,NA,51).Try mean(age,na.rm=T)
- Set nationality <- c ("French", "Spanish", "Brasilian")

- Start R
- $\bullet\,$ Clic in the consol (down left) and type $1{+}23$
- Set x < -3 and calculate x^2 .
- Set income <- c(873,1050,1401,4102,2350) and calculate the mean, var, sd, max, min, range, sum, length.
- and with age<-c(21,22,NA,51).Try mean(age,na.rm=T)
- Set nationality <- c ("French", "Spanish", "Brasilian")

Copy and paste everything !

create a new script by clicking on the green + just below the File menu. Save it as <code>basics.R</code>

Comment your script with $\sharp.$ You can organize the script with titles: $\sharp\sharp$

You can run the script directly with Ctrl+Enter or Cmd+Enter. This will execute the whole script or the selected part.

Calculus Sampling Parameter

Definition (Population)

The population is the given of all the individuals that could be in the sample. It's not "what we'd like to talk about".

Example (French actives' income: population)

Let's consider the N = 30 millions French actives. For each individual j, let's a_j be her income. The population is then [|1; N|] whose incomes are $\{a_1, \ldots, a_N\}$.

- Download the data from http://www.cepn-paris13.fr/epog/?p=1111 and save it in a specific folder
- Import in R with the button *Import Dataset* (up right), "from text (base)"
- copy and paste the produed code in basics.R

population <- read.csv("C:/Users/harari/Desktop/Dropbox/ens</pre>

Definition (i.i.d. sample)

 J_1, \ldots, J_n are *n* individual drown independently and with the same sampling scheme. This implies sampling with replacement.

Example (French actives' income: sample)

Sampling is performed on individuals: we sample j's, J_1, J_2, \ldots The income is then deterministic for each individual: $A_1 = a_{J_1}$ Introduction Estimation Calculus Sampling Parameter

Definition (Parameter)

A parameter a is a real (a numerical value) of interest.

Example (Expected income)

Let's consider a, the mean of French actives' incomes:

$$a = \frac{1}{n} \sum_{j=1}^{n} a_j$$
, where a_j is the income of individual j

and a_M and a_F , the means of male and female incomes:

$$a_M = \frac{1}{n_M} \sum_{j \text{ male}}^n a_j, \qquad a_F = \frac{1}{n_F} \sum_{j \text{ female}}^n a_j$$

Introduction Confidence interval Estimation Tests

Definition (Estimator)

An estimator \hat{a}_n of a parameter a is a function of the data, aiming to be close to the real value of the parameter.

Example (Estimator of the expected income: sample mean)

Suppose we observe a sample of incomes $a_1, \ldots, a_1 00$

$$\hat{a}_{100} = \frac{1}{100} \sum_{j=1}^{100} a_j,$$

with 45 males and 55 females

$$\hat{a}_{M,45} = \frac{1}{45} \sum_{j \text{ male}}^{n} a_j, \qquad \hat{a}_{F,55} = \frac{1}{55} \sum_{j \text{ female}}^{n} a_j$$

Introduction Confidence interval Estimation Tests

How good is my estimator?

Definition (Confidence interval - CI)

 $[l_n; u_n]$ is a 95% confidence interval for a if and only if

 $\mathbb{P}(a \in [l_n ; u_n]) = 0,95.$

The parameter is in the interval with probability 0,95.

< 🗗 🕨 <

Introduction Confidence interval Estimation Tests

How good is my estimator?

Definition (Confidence interval - CI)

 $[l_n; u_n]$ is a 95% confidence interval for a if and only if

 $\mathbb{P}(a \in [l_n; u_n]) = 0,95.$

The parameter is in the interval with probability 0.95.

Most CI are only asymptotic:

$$\mathbb{P}(a \in [l_n ; u_n]) \xrightarrow{n \to \infty} 0,95.$$

Example (Election survey)

Macron' popularity is estimated to 23%, on the basis of a sample of size 1.000, means that with probability 0.95 they are in [20%; 26%]

CI: formula

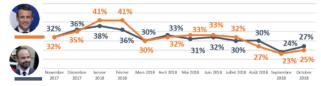
CI around the mean writes:

$$[\hat{a}_n - q_{0.95} \frac{\sigma}{\sqrt{n}}; \hat{a}_n + q_{0.95} \frac{\sigma}{\sqrt{n}}]$$

where $q_{0,95} \approx 2$ is the 95 quantile of $\mathcal{N}(0,1)$, and σ is the standard deviation in the sample. Introduction Confidence interval Tests

Example: Macron's popularity (YouGov)

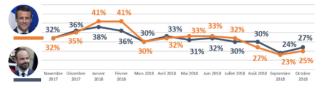
Macron's popularity, at 27% in August, has fallen in september to 23% and risen to 25% in october (1 006 individuals)



Introduction Confidence interval Tests

Example: Macron's popularity (YouGov)

Macron's popularity, at 27% in August, has fallen in september to 23% and risen to 25% in october (1 006 individuals)



95% confidence intervals are:

$$\begin{bmatrix} 24 - \frac{1/4}{\sqrt{1007}} q_{0,95} ; 27 + \frac{1/4}{\sqrt{1007}} q_{0,95} \end{bmatrix} = \begin{bmatrix} 24 ; 30 \end{bmatrix}$$
$$\begin{bmatrix} 19 - \frac{1/4}{\sqrt{1007}} q_{0,95} ; 23 + \frac{1/4}{\sqrt{1007}} q_{0,95} \end{bmatrix} = \begin{bmatrix} 20 ; 26 \end{bmatrix}$$

A small change, up to 3 pts, is not statistically significant.

Definition (Test)

If a given value m_0 for the parameter is inside the 95% confidence interval, the "null" assumption that H_0 : " $m = m_0$ " holds at confidence 95%. Else, H_0 is rejected. The probability to reject by mistake H_0 is noted α , here 5%.

Definition (Test)

If a given value m_0 for the parameter is inside the 95% confidence interval, the "null" assumption that H_0 : " $m = m_0$ " holds at confidence 95%. Else, H_0 is rejected. The probability to reject by mistake H_0 is noted α , here 5%.

The assumption of Macron's popularity stability between sept. and oct. (m = 0.23) holds, at 95% confidence.

Test main caracteristics

	Accepts H_0	Rejects H_0
	True negative	False positive
H_0 true	$\mathbb{P}_{H_0} = 1 - \alpha$	$\mathbb{P}_{H_0} = \alpha$
	Test level	Type I error
	False negative	True positive
H_1 true	$\mathbb{P}_{H_1} = \beta$	$\mathbb{P}_{H_1} = 1 - \beta$
$(H_0 \text{ false})$	Type II error	Test's power

æ

-≺ ≣⇒

• • • • • • • • • •

More precisely, the assumption of stability is weaker from aug. to sept. $(27\% \rightarrow 23\%)$ than from sept. to oct. $(23\% \rightarrow 25\%)$

< 行▶ < 三▶

More precisely, the assumption of stability is weaker from aug. to sept. $(27\% \rightarrow 23\%)$ than from sept. to oct. $(23\% \rightarrow 25\%)$ The *p*-value quantifies that strength:

Definition (*p*-value)

The *p*-value is the larger error α such as assumption H_0 holds. The smaller *p*-value, the weaker the assumption.

In june, p = 0.1 and in september, p = 0.05.