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Stationarity
Definition

White noise

Definition: stationarity

X; is said stationary if and only if
o E[X;] and Var(X};) are constant.
o Covariance of X; and X;_; does not depend on ¢:
Cov(Xy, Xeyn) = v(h) .

This means that X; “behavior” does not change in time.
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White noise
The simplest time series model is the white noise:
Xt = &¢ with Et iid.

The past have no effect on present. The series has no memory.

Theorem

White noise are stationary.
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MA (q) model

MA models some dependence: shocks perpetuate for a while

MA model

The series is a weighted mean of previous shocks.
Xe=¢ct+m g1 +moepg+--+mgeiyqg

e mp = 1 by definition.
@ ¢ is the order of the MA: how long the shock effect lasts.

Theorem

MA(q) series are stationary.
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Xt =&t O.9€t_1
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White noise (blue) and MA(1) with m; = 0.9 (red)
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Autocorrelation function

The autocorrelation is the covariance of X; with its past,
normalized by the variance:

_ Cou(Xy, Xi—p)
ACF(k) = Var(X;)

The ACF gives the order of the MA(q):

Theorem

If Xy is a MA(q) then ACF(q) # 0 and for any k > q,
ACF(k) = 0.
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MA(1) autocorrelation function. m; = 0.9 then ACF(1)=0.55
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The Lag operator: L
Let’s L be the operator that moves the time index to the past
of 1 unit: Ley = ¢4 and LX; = Xy 1

Xi=er+me1t+me 2+t mgey
Xe=¢e1+m L€t+m2L2€t+---+quq€t
Xp=1+mL+mL?*+ -+ +mgL9)e,

The order of the polynomial in L is the same as the order of the
MA.



© Stationarity

O MA

O AR
e AR(1)
° AR(p)
e PACF



AR(1)
AR(p)
AR PACF

AR(1) model

X; is AutoRegressive of order 1, if it depends directly on its
past.

AR(1) model

Xi=0a1 Xy_1+¢4
S Xi—a Xy 1=¢¢
=4 (1 — ax L)Xt =&t
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Xt =09 Xt—l -+ &4
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White noise (blue) and AR(1) with a; = —0.9 (red)
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AR(1) are MA(o0)

Xe=a1 Xi—1+¢€¢
(1—a; L)X, =¢4
Xi=(1—a; L) ey
Xe=(Q+a L+ a?L2+adL3+ .. )e

_ 2 3
Xi=¢et+ ame—1+ ajer—2+ ajer—3 + . ..
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The autocorrelation is no very informative on AR’s:
Xt =09 Xt—l + &¢

ACF
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What if ¢ =17

The inversion (1 — a3 L)™' only works if |ai| < 1
Note that a; < 0 is strange and a; > 1 is absurd, so a; €]0;1].

What if a; = 1?7 Then the binomial in L, (1 — a; L) has root
—1/a; = —1. Non-stationary.

(1-L)X;=¢; & Xi= X 14er = Var(Xy) = Var(X;_1)+o?

Var(X;) can’t be constant.

If X; is a AR(1), then the binomial 1 — a1 L does not have 1
(nor -1) for root and X; is stationary.
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AR(p) model

In AutoRegressive models, X; depends directly on its past.

AR model

Xi=a Xp1+a Xyo+---+ap Xy—p+e¢
sl-al-alP+ - —aIP)X=AL) X;=¢

@ ap = 1 by definition.

@ p is the order of the AR: how long the past affects the
present.

e the polynomial A(z) has no unit root.

Theorem

If Xi is a AR(p), then A(z) has no unit root and X; is
stationary.
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Partial autocorrelation function
PACF is much more informative:
Xi=am Xy 1+ta Xe ot +ap Xy p+ey

is a linear model with p explanatory variables.
PACF (k) is the coefficient of the last variable of the linear
model explaining X; by its k past values.

Xt: bl Xt_1+b2 Xt_2++PACF(k) Xt—k+5t

Theorem

If X; is a AR(p) then PACF(p) # 0 and for any k > p,
PACF(k) = 0.
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The PACF gives the order of the AR. For X; = 0.9 X;_1 + &
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ARMA (p,q) Orders

Forecasting

ARMA (p,q) model

A(L) Xt = M(L) £t

Xi—a X1+ —ap Xy p=ctt+tmiee1+--+mgery

@ ag = mgy = 1 by definition.
e A(z) has no unit root.

e A(z) and M(z) have no common root.

Theorem

If Xy is a ARMA(p,q), then A(x) has no unit root and X; is
stationary.
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Orders p and q

X; has an AR part = its ACF doesn’t vanish.
X; has a MA part = its PACF doesn’t vanish.
Both ACF and PACF fail !
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ARMA (p,q) Orders

Forecasting

Information criteria

We use an penalized adequation criterium instead.
Start with small p and q and
© Estimate the parameters a; and m;.
@ Compute the log-likelihood (i.e. adequation)
@ Penalize by (p + ¢) for AIC, log(T') * (p + ¢q) for BIC
@ Increase p or q and start at stage 1.
The best model minimize the criterium.

The R function auto.arima does the job alone (package
forecast).
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Forecasting

arima(data, order=c(1,0,1)) fits an ARMA(1,1)
> ARIMA(1,0,1)
Coefficients:
arl mal
0.7533 -0.7218
s.e. 0.0457 0.1208
sigma2 estimated as 230.4: log likelihood = -170.06
AIC = 344.13 BIC = 347.56

arima(data, order=c(2,0,0)) = BIC = 350.64
arima(data, order=c(0,0,2)) = BIC = 345.23
arima(data, order=c(2,0,1)) = BIC = 354.21
arima(data, order=c(1,0,2)) = BIC = 346.56

The best model is a MA(2):
bestmodel <- arima(data, order=c(0,0,2))
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Forecasting

To check the final model, we control that the residuals are a
white noise. This portmanteau test check that there is no
autocorrelation in the residuals.

>library(stats)
>Box.test (bestmodel$residuals, type= "Ljung-Box")

Box-Pierce test

data: Dbestmodel$residuals
X-squared = 0.0032013, df = 1, p-value = 0.9549

acf (bestmodel$residuals)

Large p-value : accept the null, the residuals are iid.
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Forecasting

Once you have chosen a model, you can forecast:
bestforecast<-forecast.Arima(bestmodel, h=3)
Point Forecast Lo 80 Hi 80 Lo 95 Hi 95

43 67.7 48.2 87.2 37.9 97.5
44 67.7 47.5 87.9 36.8 98.6
45 67.7 46.8 88.6 35.7 99.7

100
|
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