Time series, Stationarity

Hugo Harari-Kermadec

EPOG Econometrics

Oct. 5, 2018

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日= のへで

Stationarity MA AR

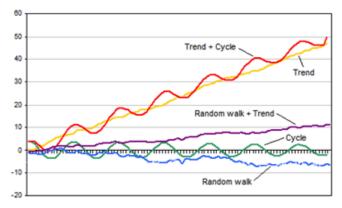
・ロト・日本・・日本・日本・ション

- 1 Stationarity
 - Alternatives
 - Definition
 - White noise

2 MA

<ロト < 部 > < 注 > < 注 > 三日 の Q @

Seasonality, tend, random walk

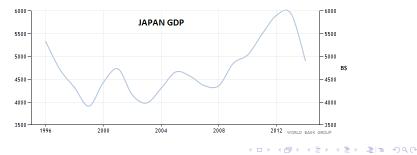


Definition: stationarity

 X_t is said stationary if and only if

- $\mathbb{E}[X_t]$ and $Var(X_t)$ are constant.
- Covariance of X_t and X_{t-h} does not depend on t: $Cov(X_t, X_{t+h}) = \gamma(h)$.

This means that X_t "behavior" does not change in time.



White noise

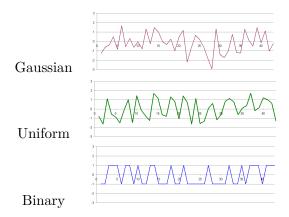
The simplest time series model is the white noise:

 $X_t = \varepsilon_t$ with ε_t i.i.d.

The past have no effect on present. The series has no memory.

Theorem

White noise are stationary.



MA(q) model

MA models some dependence: shocks perpetuate for a while

MA model

The series is a weighted mean of previous shocks.

$$X_t = \varepsilon_t + m_1 \varepsilon_{t-1} + m_2 \varepsilon_{t-2} + \dots + m_q \varepsilon_{t-q}$$

• $m_0 = 1$ by definition.

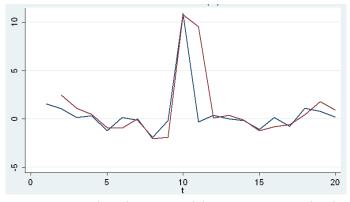
• q is the order of the MA: how long the shock effect lasts.

Theorem

MA(q) series are stationary.

MA(1)

 $X_t = \varepsilon_t + 0.9\varepsilon_{t-1}$



White noise (blue) and MA(1) with $m_1 = 0.9$ (red)

・ 同 ト ・ ヨ ト ・ ヨ ト

三日 のへの

Autocorrelation function

The autocorrelation is the covariance of X_t with its past, normalized by the variance:

$$ACF(k) = \frac{Cov(X_t, X_{t-k})}{Var(X_t)}$$

The ACF gives the order of the MA(q):

Theorem

If
$$X_t$$
 is a $MA(q)$ then $ACF(q) \neq 0$ and for any $k > q$,
 $ACF(k) = 0$.

= 200

$$ACF(0) = \frac{Cov(X_t, X_t)}{Var(X_t)} = \frac{Var(X_t)}{Var(X_t)} = 1$$

$$ACF(0) = \frac{Cov(X_t, X_t)}{Var(X_t)} = \frac{Var(X_t)}{Var(X_t)} = 1$$

$$ACF(1) = \frac{Cov(X_t, X_{t-1})}{Var(X_t)}$$

=
$$\frac{Cov(\varepsilon_t + 0.9\varepsilon_{t-1}, \varepsilon_{t-1} + 0.9\varepsilon_{t-2})}{Var(\varepsilon_t + 0.9\varepsilon_{t-1})}$$

=
$$\frac{Cov(0.9\varepsilon_{t-1}, \varepsilon_{t-1})}{Var(\varepsilon_t) + 0.9^2 Var(\varepsilon_{t-1})} = \frac{0.9}{1 + 0.9^2} = 0.55$$

$$ACF(0) = \frac{Cov(X_t, X_t)}{Var(X_t)} = \frac{Var(X_t)}{Var(X_t)} = 1$$

$$ACF(1) = \frac{Cov(X_t, X_{t-1})}{Var(X_t)}$$
$$= \frac{Cov(\varepsilon_t + 0.9\varepsilon_{t-1}, \varepsilon_{t-1} + 0.9\varepsilon_{t-2})}{Var(\varepsilon_t + 0.9\varepsilon_{t-1})}$$
$$= \frac{Cov(0.9\varepsilon_{t-1}, \varepsilon_{t-1})}{Var(\varepsilon_t) + 0.9^2 Var(\varepsilon_{t-1})} = \frac{0.9}{1 + 0.9^2} = 0.55$$

$$ACF(2) = \frac{Cov(X_t, X_{t-2})}{Var(X_t)} = \frac{0}{1+0.9^2} = 0$$

$$ACF(0) = \frac{Cov(X_t, X_t)}{Var(X_t)} = \frac{Var(X_t)}{Var(X_t)} = 1$$

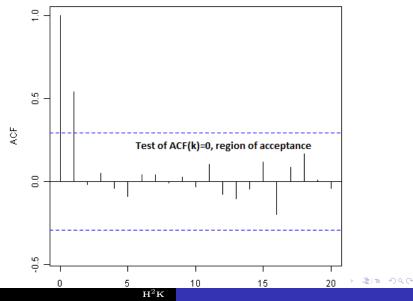
$$ACF(1) = \frac{Cov(X_t, X_{t-1})}{Var(X_t)}$$

=
$$\frac{Cov(\varepsilon_t + 0.9\varepsilon_{t-1}, \varepsilon_{t-1} + 0.9\varepsilon_{t-2})}{Var(\varepsilon_t + 0.9\varepsilon_{t-1})}$$

=
$$\frac{Cov(0.9\varepsilon_{t-1}, \varepsilon_{t-1})}{Var(\varepsilon_t) + 0.9^2 Var(\varepsilon_{t-1})} = \frac{0.9}{1 + 0.9^2} = 0.55$$

$$ACF(2) = \frac{Cov(X_t, X_{t-2})}{Var(X_t)} = \frac{0}{1+0.9^2} = 0$$
$$ACF(3) = \frac{Cov(X_t, X_{t-3})}{Var(X_t)} = \frac{0}{1+0.9^2} = 0 \dots$$

MA(1) autocorrelation function. $m_1 = 0.9$ then ACF(1)=0.55



The Lag operator: L

Let's L be the operator that moves the time index to the past of 1 unit: $L\varepsilon_t = \varepsilon_{t-1}$ and $LX_t = X_{t-1}$

$$X_t = \varepsilon_t + m_1 \varepsilon_{t-1} + m_2 \varepsilon_{t-2} + \dots + m_q \varepsilon_{t-q}$$

$$X_t = \varepsilon_t + m_1 L \varepsilon_t + m_2 L^2 \varepsilon_t + \dots + m_q L^q \varepsilon_t$$

$$X_t = (1 + m_1 L + m_2 L^2 + \dots + m_q L^q) \varepsilon_t$$

The order of the polynomial in L is the same as the order of the MA.

◎ ▶ ▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ ● ● ●

Stationarity	AR(1)
MA	AR(p)
AR	PACF

AR(1) model

 X_t is AutoRegressive of order 1, if it depends directly on its past.

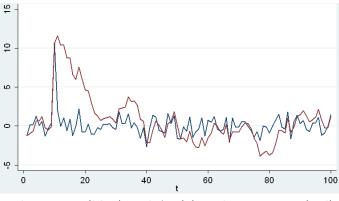
$\overline{AR(1)}$ model

$$X_t = a_1 X_{t-1} + \varepsilon_t$$
$$\Leftrightarrow X_t - a_1 X_{t-1} = \varepsilon_t$$
$$\Leftrightarrow (1 - a_1 L) X_t = \varepsilon_t$$

·▲圖▶ ▲필▶ ▲필▶ · 필⊨ · 이익()·

AR(1)

 $X_t = 0.9 X_{t-1} + \varepsilon_t$



White noise (blue) and AR(1) with $a_1 = -0.9$ (red)

AR(1) are $MA(\infty)$

$$X_t = a_1 X_{t-1} + \varepsilon_t$$

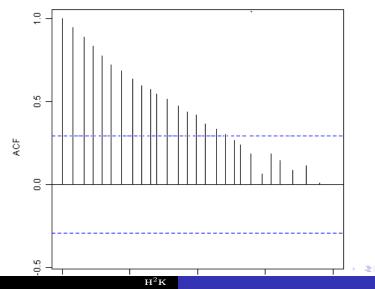
$$(1 - a_1 L)X_t = \varepsilon_t$$

$$X_t = (1 - a_1 L)^{-1}\varepsilon_t$$

$$X_t = (1 + a_1 L + a_1^2 L^2 + a_1^3 L^3 + \dots)\varepsilon_t$$

$$X_t = \varepsilon_t + a_1\varepsilon_{t-1} + a_1^2\varepsilon_{t-2} + a_1^3\varepsilon_{t-3} + \dots$$

The autocorrelation is no very informative on AR's: $X_t = 0.9 \; X_{t-1} + \varepsilon_t$



What if $a_1 = 1$?

The inversion $(1 - a_1 L)^{-1}$ only works if $|a_1| < 1$ Note that $a_1 < 0$ is strange and $a_1 > 1$ is absurd, so $a_1 \in]0; 1]$.

Unit root

What if $a_1 = 1$? Then the binomial in L, $(1 - a_1 L)$ has root $-1/a_1 = -1$. Non-stationary.

 $(1-L)X_t = \varepsilon_t \quad \Leftrightarrow X_t = X_{t-1} + \varepsilon_t \quad \Rightarrow Var(X_t) = Var(X_{t-1}) + \sigma_{\varepsilon}^2$

 $Var(X_t)$ can't be constant.

Theorem

If X_t is a AR(1), then the binomial $1 - a_1L$ does not have 1 (nor -1) for root and X_t is stationary.

AR(p) model

In AutoRegressive models, X_t depends directly on its past.

AR model

$$X_t = a_1 X_{t-1} + a_2 X_{t-2} + \dots + a_p X_{t-p} + \varepsilon_t$$

$$\Rightarrow (1 - a_1 L - a_2 L^2 + \dots - a_p L^p) X_t = A(L) X_t = \varepsilon_t$$

- $a_0 = 1$ by definition.
- *p* is the order of the AR: how long the past affects the present.
- the polynomial A(x) has no unit root.

Theorem

If X_t is a AR(p), then A(x) has no unit root and X_t is stationary.

Stationarity AR(1) MA AR(p) AR PACF

Partial autocorrelation function

PACF is much more informative:

$$X_t = a_1 X_{t-1} + a_2 X_{t-2} + \dots + a_p X_{t-p} + \varepsilon_t$$

is a linear model with p explanatory variables. PACF(k) is the coefficient of the last variable of the linear model explaining X_t by its k past values.

$$X_t = b_1 X_{t-1} + b_2 X_{t-2} + \dots + PACF(k) X_{t-k} + \varepsilon_t$$

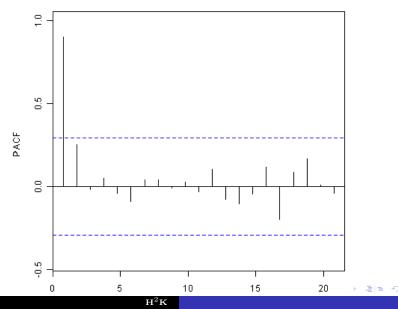
同 🖌 🖌 🖉 🖌 🖌 토 🖌 🖉 🗐 🖂

Theorem

If X_t is a AR(p) then $PACF(p) \neq 0$ and for any k > p, PACF(k) = 0.

Stationarity	AR(1)
MA	AR(p)
\mathbf{AR}	PACF

The PACF gives the order of the AR. For $X_t = 0.9 X_{t-1} + \varepsilon_t$



Definition Orders Forecasting

- ◆母 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 | ■ ○ ○ ○

- Definition
- Orders
- Forecasting

Definition Orders Forecasting

ARMA(p,q) model

$$A(L) X_t = M(L) \varepsilon_t$$

 $X_t - a_1 X_{t-1} + \dots - a_p X_{t-p} = \varepsilon_t + m_1 \varepsilon_{t-1} + \dots + m_q \varepsilon_{t-q}$

- $a_0 = m_0 = 1$ by definition.
- A(x) has no unit root.
- A(x) and M(x) have no common root.

Theorem

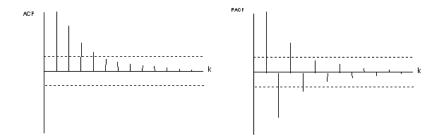
If X_t is a ARMA(p,q), then A(x) has no unit root and X_t is stationary.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ヨ ・ ク Q (や

Definition Orders Forecasting

Orders p and q

 X_t has an AR part \Rightarrow its ACF doesn't vanish. X_t has a MA part \Rightarrow its PACF doesn't vanish. Both ACF and PACF fail !



Definition Orders Forecasting

Information criteria

We use an penalized adequation criterium instead. Start with small p and q and

- Estimate the parameters a_i and m_j .
- **2** Compute the log-likelihood (i.e. adequation)
- **③** Penalize by (p+q) for AIC, $\log(T) * (p+q)$ for BIC
- Increase p or q and start at stage 1.

The best model minimize the criterium. The R function **auto.arima** does the job alone (package forecast).

Definition Orders Forecasting

arima(data, order=c(1,0,1)) fits an ARMA(1,1) > ARIMA(1,0,1)Coefficients: ar1 ma1 0.7533 - 0.7218s.e. 0.0457 0.1208 sigma2 estimated as 230.4: log likelihood = -170.06 ATC = 344.13 BTC = 347.56arima(data, order=c(2,0,0)) \Rightarrow BIC = 350.64 arima(data, order=c(0,0,2)) \Rightarrow BIC = 345.23 arima(data, order=c(2,0,1)) \Rightarrow BIC = 354.21 arima(data, order=c(1,0,2)) \Rightarrow BIC = 346.56 The best model is a MA(2): bestmodel <- arima(data, order=c(0,0,2))</pre>

ARMA(p,q) Order

Definition Orders Forecasting

To check the final model, we control that the residuals are a white noise. This portmanteau test check that there is no autocorrelation in the residuals.

>library(stats)
>Box.test(bestmodel\$residuals, type= "Ljung-Box")

Box-Pierce test

data: bestmodel\$residuals
X-squared = 0.0032013, df = 1, p-value = 0.9549

acf(bestmodel\$residuals)

Large p-value : accept the null, the residuals are iid.

Orders Forecasting

Once you have chosen a model, you can **forecast**: bestforecast<-forecast.Arima(bestmodel, h=3)</pre> Hi 95 Point Forecast Lo 80 Hi 80 Lo 95 43 67.7 48.2 87.2 37.9 97.5 44 67.7 47.5 87.9 36.8 98.6 45 67.7 46.8 88.6 35.7 99.7

