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Definition: stationarity
Xt is said stationary if and only if

E[Xt ] and Var(Xt) are constant.
Covariance of Xt and Xt−h does not depend on t:
Cov(Xt ,Xt+h) = γ(h) .

This means that Xt “behavior” does not change in time.
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White noise

The simplest time series model is the white noise:

Xt = εt with εt i.i.d.

The past have no effect on present. The series has no memory.

Theorem
White noise are stationary.
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MA(q) model

MA models some dependence: shocks perpetuate for a while

MA model
The series is a weighted mean of previous shocks.

Xt = εt + m1 εt−1 + m2 εt−2 + · · ·+ mq εt−q

m0 = 1 by definition.
q is the order of the MA: how long the shock effect lasts.

Theorem
MA(q) series are stationary.
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MA(1)
Xt = εt + 0.9εt−1

White noise (blue) and MA(1) with m1 = 0.9 (red)
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Autocorrelation function

The autocorrelation is the covariance of Xt with its past,
normalized by the variance:

ACF(k) = Cov(Xt ,Xt−k)

Var(Xt)

The ACF gives the order of the MA(q):

Theorem
If Xt is a MA(q) then ACF(q) 6= 0 and for any k > q,
ACF(k) = 0.
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Xt = εt + 0.9εt−1

ACF(0) =
Cov(Xt ,Xt)

Var(Xt)
=

Var(Xt)

Var(Xt)
= 1

ACF(1) =
Cov(Xt ,Xt−1)

Var(Xt)

=
Cov(εt + 0.9εt−1, εt−1 + 0.9εt−2)

Var(εt + 0.9εt−1)

=
Cov(0.9εt−1, εt−1)

Var(εt) + 0.92Var(εt−1)
=

0.9

1 + 0.92
= 0.55

ACF(2) =
Cov(Xt ,Xt−2)

Var(Xt)
=

0

1 + 0.92
= 0

ACF(3) =
Cov(Xt ,Xt−3)

Var(Xt)
=

0

1 + 0.92
= 0 …
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MA(1) autocorrelation function. m1 = 0.9 then ACF(1)=0.55
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The Lag operator: L
Let’s L be the operator that moves the time index to the past
of 1 unit: Lεt = εt−1 and LXt = Xt−1

Xt = εt + m1 εt−1 + m2 εt−2 + · · ·+ mq εt−q

Xt = εt + m1 Lεt + m2 L2εt + · · ·+ mq Lqεt

Xt = (1 + m1L + m2L2 + · · ·++mqLq)εt

The order of the polynomial in L is the same as the order of the
MA.
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AR(1) model

Xt is AutoRegressive of order 1, if it depends directly on its
past.

AR(1) model

Xt = a1 Xt−1 + εt

⇔ Xt − a1 Xt−1 = εt

⇔ (1− a1 L)Xt = εt
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AR(1)
Xt = 0.9 Xt−1 + εt

White noise (blue) and AR(1) with a1 = −0.9 (red)
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AR(1) are MA(∞)

Xt = a1 Xt−1 + εt

(1− a1 L)Xt = εt

Xt = (1− a1 L)−1εt

Xt = (1 + a1 L + a2
1L2 + a3

1L3 + . . . )εt

Xt = εt + a1εt−1 + a2
1εt−2 + a3

1εt−3 + . . .
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The autocorrelation is no very informative on AR’s:
Xt = 0.9 Xt−1 + εt
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What if a1 = 1 ?
The inversion (1− a1 L)−1 only works if |a1| < 1
Note that a1 < 0 is strange and a1 > 1 is absurd, so a1 ∈]0; 1].

Unit root
What if a1 = 1? Then the binomial in L, (1− a1 L) has root
−1/a1 = −1. Non-stationary.

(1−L)Xt = εt ⇔ Xt = Xt−1+εt ⇒ Var(Xt) = Var(Xt−1)+σ2
ε

Var(Xt) can’t be constant.

Theorem
If Xt is a AR(1), then the binomial 1− a1L does not have 1
(nor -1) for root and Xt is stationary.
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AR(p) model
In AutoRegressive models, Xt depends directly on its past.

AR model

Xt = a1 Xt−1 + a2 Xt−2 + · · ·+ ap Xt−p + εt

⇔ (1− a1 L − a2 L2 + · · · − ap Lp)Xt = A(L) Xt = εt

a0 = 1 by definition.
p is the order of the AR: how long the past affects the
present.
the polynomial A(x) has no unit root.

Theorem
If Xt is a AR(p), then A(x) has no unit root and Xt is
stationary.
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Partial autocorrelation function

PACF is much more informative:

Xt = a1 Xt−1 + a2 Xt−2 + · · ·+ ap Xt−p + εt

is a linear model with p explanatory variables.
PACF(k) is the coefficient of the last variable of the linear
model explaining Xt by its k past values.

Xt = b1 Xt−1 + b2 Xt−2 + · · ·+ PACF(k) Xt−k + εt

Theorem
If Xt is a AR(p) then PACF(p) 6= 0 and for any k > p,
PACF(k) = 0.
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The PACF gives the order of the AR. For Xt = 0.9 Xt−1 + εt
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ARMA(p,q) model

A(L) Xt = M (L) εt

Xt − a1 Xt−1 + · · · − ap Xt−p = εt + m1 εt−1 + · · ·+ mq εt−q

a0 = m0 = 1 by definition.
A(x) has no unit root.
A(x) and M (x) have no common root.

Theorem
If Xt is a ARMA(p,q), then A(x) has no unit root and Xt is
stationary.
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Orders p and q

Xt has an AR part ⇒ its ACF doesn’t vanish.
Xt has a MA part ⇒ its PACF doesn’t vanish.
Both ACF and PACF fail !
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Information criteria

We use an penalized adequation criterium instead.
Start with small p and q and

1 Estimate the parameters ai and mj .
2 Compute the log-likelihood (i.e. adequation)
3 Penalize by (p + q) for AIC, log(T) ∗ (p + q) for BIC
4 Increase p or q and start at stage 1.

The best model minimize the criterium.
The R function auto.arima does the job alone (package
forecast).
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arima(data, order=c(1,0,1)) fits an ARMA(1,1)
> ARIMA(1,0,1)

Coefficients:
ar1 ma1
0.7533 -0.7218

s.e. 0.0457 0.1208
sigma2 estimated as 230.4: log likelihood = -170.06
AIC = 344.13 BIC = 347.56

arima(data, order=c(2,0,0)) ⇒ BIC = 350.64
arima(data, order=c(0,0,2)) ⇒ BIC = 345.23
arima(data, order=c(2,0,1)) ⇒ BIC = 354.21
arima(data, order=c(1,0,2)) ⇒ BIC = 346.56
The best model is a MA(2):
bestmodel <- arima(data, order=c(0,0,2))
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To check the final model, we control that the residuals are a
white noise. This portmanteau test check that there is no
autocorrelation in the residuals.

>library(stats)
>Box.test(bestmodel$residuals, type= "Ljung-Box")

Box-Pierce test

data: bestmodel$residuals
X-squared = 0.0032013, df = 1, p-value = 0.9549

acf(bestmodel$residuals)

Large p-value : accept the null, the residuals are iid.
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Once you have chosen a model, you can forecast:
bestforecast<-forecast.Arima(bestmodel, h=3)
Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
43 67.7 48.2 87.2 37.9 97.5
44 67.7 47.5 87.9 36.8 98.6
45 67.7 46.8 88.6 35.7 99.7
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