Non stationarity and cointegration

Hugo Harari-Kermadec

EPOG Econometrics

oct. 18, 2018

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

1 Non stationarity

- 2 Dickey-Fuller test strategy
- 3 Cointegration

ъ

GDP Random walk?

문▶ 문

- GDP
- Random walk?
- 2 Dickey-Fuller test strategy
- 3 Cointegration

GDP Random walk?

US GDP

Clearly non stationary.

GDP Random walk?

æ

-

100m record

GDP Random walk?

æ

100m record


```
Call:
lm(formula = record ~ year_gdp)
```

Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 1.012e+03 1.778e+00 569.40 < 2e-16 *** year_gdp -8.513e-04 5.379e-05 -15.83 3.81e-13 ***

Multiple R-squared: 0.9226, Adjusted R-squared: 0.919

GDP Random walk?

< 4 → < 3

- E

Random walk

GDP Random walk?

Random walk + trend

GDP Random walk?

æ

イロト イポト イヨト イヨト

Random walk model

 $AR(1) \mod l$

$$X_t = -a_1 X_{t-1} + \varepsilon_t$$
$$\Leftrightarrow (1 + a_1 L) X_t = \varepsilon_t$$

Unit root

$$a_1 = -1 ! \Rightarrow L(X_t) = \varepsilon_t$$

Denmark real consumption

Non stationary \Rightarrow Random walk?

Denmark real consumption

Time Non stationary \Rightarrow Trend?

Consider the model:

$$Z_t = \alpha + \beta t - a_1 Z_{t-1} + \varepsilon_t$$

(1 - L)Z_t = $\alpha + \beta t + (-a_1 - 1) Z_{t-1} + \varepsilon_t$
(1 - L)Z_t = $\alpha + \beta t + \rho Z_{t-1} + \varepsilon_t$

Looks like a linear model, but behaves very differently if $\rho = 0$ ("the null"). And again differently if $\alpha \neq 0$ and/or $\beta \neq 0$ So we need a specific test (not a T-test) in each situation.

- > library(urca)
- > df=ur.df(X,type="trend")
- > summary(df)

lm(formula = z.diff ~ z.lag.1 + 1 + tt + z.diff.lag)

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	0.3227245	0.1502083	2.149	0.0327 *
z.lag.1	-0.0329780	0.0166319	-1.983	0.0486 *
tt	-0.0004194	0.0009767	-0.429	0.6680
z.diff.lag	-0.0230547	0.0652767	-0.353	0.7243

Last column from linear model \rightarrow false if unit-root.

$$(1-L)Z_t = \alpha + \beta t + \rho Z_{t-1} + \varepsilon_t$$

Output continues with adequate stats:

Value of test-statistic is: -1.9828 1.8771 2.7371

- t-value for $\rho = 0$
- Fisher stat for $(\rho, \alpha, \beta) = (0, 0, 0)$
- Fisher stat for $(\rho, \beta) = (0, 0)$

Critical values for test statistics:

1pct5pct10pcttau3-3.99-3.43-3.13phi26.224.754.07phi38.436.495.47

$$(1-L)Z_t = \alpha + \beta t + \rho Z_{t-1} + \varepsilon_t$$

Value of test-statistic is: -1.9828 1.8771 2.7371 1pct 5pct 10pct tau3 -3.99 -3.43 -3.13 phi3 8.43 6.49 5.47

If the test stat for $\rho = 0$ is larger than tau³ then accept the unit-root. No absolute values here!

In this example, -1.98>-3.13, we accept $\rho = 0$ at 90%.

- If we accept $\rho = 0$, check that the full model is ok.
 - If the test stat [2.7] for (ρ, β) is larger than phi3 [5.47], then we reject $(\rho, \beta) = (0, 0)$, the full model is ok [No].
 - If not, then $\beta = 0$ and the full model is wrong. Move to model 2 (no trend).
- If we reject $\rho = 0$, it's a classical lineal model, check the trend with the first table.

> summary(ur.df(y=lc,type='drift')
lm(formula = z.diff ~ z.lag.1 + 1 + z.diff.lag)

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	0.0038899	0.0841706	0.046	0.963
z.lag.1	0.0003199	0.0078044	0.041	0.967
z.diff.lag	-0.1240402	0.1028634	-1.206	0.231

Value of test-statistic is: 0.041 11.1569

```
Critical values for test statistics:

1pct 5pct 10pct

tau2 -3.51 -2.89 -2.58

phi1 6.70 4.71 3.86
```

$$(1-L)Z_t = \alpha + \rho Z_{t-1} + \varepsilon_t$$

Value of test-statistic is: 0.041 11.1569

1pct 5pct 10pct

tau2 -3.51 -2.89 -2.58

phi1 6.70 4.71 3.86

If the test stat for $\rho = 0$ is larger than tau2 then accept the unit-root. No absolute values here!

In this example, 0.04 > -2.58, we accept $\rho = 0$ at 90%.

- If we accept $\rho = 0$, check that model 2 is ok.
 - If the test stat [11] is larger than phil [6.7], then we reject $(\rho, \alpha) = (0, 0)$, model 2 is ok [even at 99%].
 - If not, then α = 0 and model 2 is wrong. Move to model 1 (no drift)

・ 同 ト ・ ヨ ト ・ ヨ ト

• If we reject $\rho = 0$, it's a classical lineal model, check the drift with the first table.

```
> summary(ur.df(y=lc,type='none'))
lm(formula = z.diff ~ z.lag.1 - 1 + z.diff.lag)
```

Estimate Std. Error t value Pr(>|t|) z.lag.1 0.0006805 0.0001433 4.749 7.24e-06 *** z.diff.lag -0.1243891 0.1020458 -1.219 0.226

Value of test-statistic is: 4.7485

```
Critical values for test statistics:
1pct 5pct 10pct
tau1 -2.6 -1.95 -1.61
```

$$(1-L)Z_t = \rho Z_{t-1} + \varepsilon_t$$

Value of test-statistic is: 4.7485 1pct 5pct 10pct tau1 -2.6 -1.95 -1.61 If the test stat for $\rho = 0$ is larger than tau1 then accept the unit-root. No absolute values here! In this example, 4.74>-1.6, we accept $\rho = 0$ at 90%, model 1 is ok. All this can be done with more lags in the model (augmented DF model).

You can choose the lags: summary(ur.df(y=lc,lags=3, type='trend')) or leave it to R: summary(ur.df(y=lc,type='trend',selectlags = "AIC")) All the rest of the DF test strategy remains unchanged.

Error Correction Model Johansen test

US Income and Consumption

Clearly twice the same non stationarity.

Cointegration: same random walk in 2 (or) more time series.

$$\begin{array}{rcl} X_t &=& X_{t-1} + \varepsilon_t \\ Y_t &=& aX_t + \nu_t \end{array}$$

There is a stationary combination: $Y_t - aX_t = \nu_t$ is a white noise.

イロト イポト イヨト イヨト

ъ

Cointegration: same random walk in 2 (or) more time series.

$$\begin{aligned} X_t &= X_{t-1} + \varepsilon_t \\ Y_t &= aX_t + \nu_t \end{aligned}$$

There is a stationary combination: $Y_t - aX_t = \nu_t$ is a white noise.

Then
$$Y_{t-1} = aX_{t-1} + \nu_{t-1} = aX_{t-1} + \left(Y_{t-1} - aX_{t-1}\right)$$

イロト イポト イヨト イヨト

ъ

Cointegration: same random walk in 2 (or) more time series.

$$\begin{aligned} X_t &= X_{t-1} + \varepsilon_t \\ Y_t &= aX_t + \nu_t \end{aligned}$$

There is a stationary combination: $Y_t - aX_t = \nu_t$ is a white noise.

Then
$$Y_{t-1} = aX_{t-1} + \nu_{t-1} = aX_{t-1} + \left(Y_{t-1} - aX_{t-1}\right)$$

and
$$(1 - L) Y_t = -\left(Y_{t-1} - aX_{t-1}\right) + a(1 - L)X_t + \varepsilon_t$$

Therefore, the variations of Y_t must compensate the deviations from $Y_{t-1} - aX_{t-1}$ (coef. -1) \Rightarrow Error Correction Model.

イロト イポト イヨト イヨト

>coint=ca.jo(cbind(consumption,income),spec="longrun")
>summary(coint)

Eigenvectors, normalised to first column: (These are the cointegration relations) consumption.l2 income.l2 consumption.l2 1.000000 1.000000 income.l2 -1.153328 -1.023532

r = 0 is rejected \rightarrow there is at least one relation. $r \leq 1$ accepted at 95%: there is cointegration. If it where rejected also, then each cariable is stationary.

→ 御 ▶ ★ 문 ▶ ★ 문 ▶ _ _ 문

US Income and Consumption

The combination is quite stationary